中文一二三区_九九在线中文字幕无码_国产一二区av_38激情网_欧美一区=区三区_亚洲高清免费观看在线视频

首頁 > 范文大全 > 工作總結(jié) > 個人工作總結(jié) > 高二數(shù)學(xué)工作總結(jié)(通用31篇)

高二數(shù)學(xué)工作總結(jié)

發(fā)布時(shí)間:2024-01-09

高二數(shù)學(xué)工作總結(jié)(通用31篇)

高二數(shù)學(xué)工作總結(jié) 篇1

  時(shí)光荏苒,轉(zhuǎn)眼一學(xué)期又已經(jīng)結(jié)束,這學(xué)期以來,我努力改進(jìn)教育教學(xué)思路和方法,切實(shí)抓好教育教學(xué)的各個環(huán)節(jié),認(rèn)真引導(dǎo)學(xué)生理解和鞏固基礎(chǔ)知識和基本技能,無論從學(xué)習(xí)態(tài)度還是學(xué)習(xí)方法上都有了明顯的進(jìn)步,取得了應(yīng)有的成績。現(xiàn)將本學(xué)期的教學(xué)工作總結(jié)如下:

  一、工作態(tài)度

  一學(xué)期以來,本人認(rèn)真?zhèn)湔n、上課、聽課、評課,及時(shí)批改作業(yè)、講評作業(yè),做好課后輔導(dǎo)工作,廣泛涉獵各種知識,形成完整的知識結(jié)構(gòu),并嚴(yán)格要求學(xué)生,尊重學(xué)生,發(fā)揚(yáng)教學(xué)民主,使學(xué)生學(xué)有所得,從而不斷提高自己的教學(xué)水平和思想覺悟,并順利完成教育教學(xué)任務(wù)。

  二、加強(qiáng)理論學(xué)習(xí),積極學(xué)習(xí)新課程

  理論是行動的先導(dǎo)。自實(shí)行新課程以來,我是帶新課程的新授課,為了加強(qiáng)對新課程的認(rèn)識和了解,我積極學(xué)習(xí)新課程改革的相關(guān)要求理論,仔細(xì)研究新的課程標(biāo)準(zhǔn),及時(shí)更新自己的大腦,以適應(yīng)新課程改革的需要。同時(shí)為了和教學(xué)一線的同行們交流,積極利用好互聯(lián)網(wǎng)絡(luò),開通了教育教學(xué)博客,養(yǎng)成了及時(shí)寫教學(xué)反思的好習(xí)慣。作為一位年輕的數(shù)學(xué)教師,我發(fā)現(xiàn)在教學(xué)前后,進(jìn)行教學(xué)反思尤為重要,在課堂教學(xué)過程中,學(xué)生是學(xué)習(xí)的主體,學(xué)生總會獨(dú)特的見解,教學(xué)前后,都要進(jìn)行反思,對以后上課積累了經(jīng)驗(yàn),奠定了基矗同時(shí),這些見解也是對課堂教學(xué)非常重要的一部分,積累經(jīng)驗(yàn),教后反思,是上好一堂精彩而又有效課的第一手材料。

  三、關(guān)心愛護(hù)學(xué)生,積極研究學(xué)情

  所謂親其師,信其道,愛是最好的教育,作為教師不僅僅要擔(dān)任響應(yīng)的教學(xué),同時(shí)還肩負(fù)著育人的責(zé)任。如何育人?我認(rèn)為,愛學(xué)生是根本。愛學(xué)生,就需要我們尊重學(xué)生的人格、興趣、愛好,了解學(xué)生習(xí)慣以及為人處世的態(tài)度、方式等,然后對癥下藥,幫助學(xué)生樹立健全、完善的人格。只有這樣,了解了學(xué)生,才能了解到學(xué)情,在教學(xué)中才能做到有的放矢,增強(qiáng)了教學(xué)的針對性和有效性。多與學(xué)生交流,加強(qiáng)與學(xué)生的思想溝通,做學(xué)生的朋友,才能及時(shí)發(fā)現(xiàn)學(xué)生學(xué)習(xí)中存在的問題,以及班級中學(xué)生的學(xué)習(xí)情況,從而為自己的備課提供第一手的資料,還可以為班主任的班級管理提高一些有價(jià)值的建議

  四、充分備課,精心鉆研教材及考題

  分備教材和備學(xué)生兩部分,二者相輔相成,互相影響。備教材就是根據(jù)所學(xué)內(nèi)容設(shè)計(jì)課堂教學(xué)情景,力爭做到深入淺出,生動活潑,方法靈活,講練結(jié)合,真正體現(xiàn)學(xué)生的主體作用和教師的主導(dǎo)作用;備學(xué)生指的是全面掌握學(xué)生學(xué)習(xí)數(shù)學(xué)的現(xiàn)狀,依據(jù)學(xué)生的學(xué)習(xí)態(tài)度、水平設(shè)計(jì)合理恰當(dāng)?shù)?教學(xué)氛圍,充分考慮學(xué)生的智力發(fā)展水平,擴(kuò)展學(xué)生的認(rèn)知領(lǐng)域,為學(xué)生提供思維訓(xùn)練的平臺,創(chuàng)設(shè)熟悉易懂的學(xué)習(xí)情景,為學(xué)生的心理發(fā)展和知識積累提供可能。備課中一定要注意從學(xué)生的實(shí)際出發(fā),從教材的實(shí)際內(nèi)容出發(fā),這樣二者兼顧才能提高備課的針對性、有效性。一節(jié)課的好壞,關(guān)鍵在于備課,備課是教師教學(xué)中的一個重要環(huán)節(jié),備課的質(zhì)量直接影響到學(xué)生學(xué)習(xí)的效果。

  在教學(xué)過程過,特別重視學(xué)生對數(shù)學(xué)概念的理解,數(shù)學(xué)概念是數(shù)學(xué)基礎(chǔ)知識,是考生必須牢固而又熟練掌握的內(nèi)容之一。它也是高考數(shù)學(xué)科所重點(diǎn)考查的重點(diǎn)內(nèi)容。對于重要的數(shù)學(xué)概念,考生尤其需要正確理解和熟練掌握,達(dá)到運(yùn)用自如的程度。從這幾年的高考來看,有相當(dāng)多的考生對掌握不牢,對一些概念內(nèi)容的理解只浮于表面,甚至殘缺不全,因而在解題中往往無從下手或者導(dǎo)致各種錯誤。還特別重視學(xué)生對公式掌握的熟練程度和基本運(yùn)算的訓(xùn)練,重點(diǎn)抓解答題的解題規(guī)范訓(xùn)練.

  五、落實(shí)常規(guī),確保教學(xué)質(zhì)量

  上課是教學(xué)活動的主要環(huán)節(jié),也是教學(xué)工作的關(guān)鍵階段。上課要堅(jiān)持以學(xué)生活動為中心,面向全體學(xué)生授課,以啟發(fā)式為主,兼顧個別學(xué)生,從聽講、筆記、練習(xí)、反饋等環(huán)節(jié)入手,引導(dǎo)學(xué)生積極參與學(xué)習(xí)活動,理解和掌握基本概念和基本技能,使學(xué)生在學(xué)習(xí)活動過程中不僅獲得知識還要提高解決問題的能力,不光獲得應(yīng)有的智慧,也應(yīng)掌握思考問題的思想方法。對概念課采用啟發(fā)引導(dǎo)式,引導(dǎo)學(xué)生理解和掌握新概念產(chǎn)生的背景,發(fā)生發(fā)展的過程,展示新舊知識之間的內(nèi)在聯(lián)系,加深對概念的理解和掌握;對鞏固課堅(jiān)持精講多練,精選典型例題,引導(dǎo)學(xué)生仔細(xì)分析問題的特點(diǎn),尋求解決問題的思路和方法,提出合理的解決方案,力爭使講解通俗易懂,使方法融會貫通,并讓學(xué)生在練習(xí)中加以消化,真正提高學(xué)生分析問題解決問題的能力。

  六、更新觀念,積極進(jìn)行新課改

  首先,轉(zhuǎn)變觀念要充分認(rèn)識新課改是教育教學(xué)的必然,教師要更新觀念,要認(rèn)真領(lǐng)會新課改的理念,了解課改革的目的這樣才不會在改革當(dāng)中迷失方向。

  其次,教師要不斷學(xué)習(xí)不斷積累,要掌握豐厚的專業(yè)知識,所謂給人一杯水,自己要有一桶水,要注意本學(xué)科與其它學(xué)科的聯(lián)系,拓寬自身的知識占有。要多渠道采取不同手段獲取知識,教師除了看專業(yè)書籍,也要借助于網(wǎng)絡(luò)媒體這一先進(jìn)的手段進(jìn)行學(xué)習(xí).要多和其它教師交流、溝通,提高合作意識,取長補(bǔ)短.

  同時(shí),教師是教育、教學(xué)的組織者,要充分理解學(xué)生,了解學(xué)生的實(shí)際情況,了解他們的興趣和愛好,了解不同學(xué)生的智力差別,做到因材施教.教師要給學(xué)生充分的思維空間、活動空間,給他們展示自我的空間和舞臺,活躍學(xué)生的思維,變被動的學(xué)習(xí)為主動的學(xué)習(xí),全面提高學(xué)生的各方面能力.

  七、積極參與聽課、評課,虛心向同行學(xué)習(xí)教學(xué)方法,博采眾長,提高教學(xué)水平。

  八、培養(yǎng)多種興趣愛好,到圖書館博覽群書,不斷擴(kuò)寬知識面,為教學(xué)內(nèi)容注入新鮮血液。

  走進(jìn)21世紀(jì),社會對教師的素質(zhì)要求更高,在今后的教育教學(xué)工作中,我將更嚴(yán)格要求自己,努力工作,發(fā)揚(yáng)優(yōu)點(diǎn),改正缺點(diǎn),開拓前進(jìn),為美好的明天貢獻(xiàn)自己的力量。

  總之,教學(xué)工作不僅僅要落實(shí)常規(guī),還要因地制宜,與時(shí)俱進(jìn),針對學(xué)生的具體情況采取相應(yīng)的措施與辦法,有計(jì)劃有落實(shí)有檢查,關(guān)注每一個學(xué)生,關(guān)注每一個課堂,關(guān)注每一個環(huán)節(jié),從小處著眼,從細(xì)處著手。只有這樣才有利于教學(xué)質(zhì)量的提高,有利于學(xué)生身心的健康發(fā)展。

高二數(shù)學(xué)工作總結(jié) 篇2

  這學(xué)期我任高二兩個班的數(shù)學(xué)課,下面我對這學(xué)期的工作進(jìn)行一下總結(jié)。

  (一)在備課方面,我認(rèn)真鉆研教材,注意了解學(xué)生,潛心研究教法。

  這學(xué)期的教學(xué)內(nèi)容包括,排列、組合、二項(xiàng)式定理,概率,導(dǎo)數(shù)。針對學(xué)生實(shí)際情況,我采取了低起點(diǎn),小步子的教學(xué)方法,根據(jù)教材的內(nèi)容設(shè)計(jì)課的類型,并對教學(xué)過程的程序及時(shí)安排,認(rèn)真寫好每一篇教案。每一節(jié)課都做到有備而來,每堂課都在課前做好充分準(zhǔn)備,課后及時(shí)對課上出現(xiàn)的情況進(jìn)行總結(jié),并認(rèn)真搜集每節(jié)課的知識要點(diǎn),歸納在一起。一年以來,我注重和他們的溝通,多和他們談心,了解他們的學(xué)習(xí)情況,幫助學(xué)生取得了不同程度的進(jìn)步。

  (二)增強(qiáng)上課的技能,提高教學(xué)質(zhì)量。

  在講課時(shí),盡量使講解清晰化,使課堂教學(xué)的內(nèi)容條理化,做到課堂結(jié)構(gòu)清晰,重點(diǎn)、難點(diǎn)突出。在課堂上,特別注意調(diào)動學(xué)生的主觀能動性,加強(qiáng)師生交流,充分體現(xiàn)學(xué)生的主體作用和老師的主導(dǎo)作用。盡量讓學(xué)生學(xué)得容易,學(xué)得輕松愉快;注意習(xí)題的數(shù)量和質(zhì)量,精講精練,在課堂上老師盡量講的少,學(xué)生思考和練習(xí)的`多。同時(shí)在每一堂課上都充分考慮每個層次的學(xué)生的學(xué)習(xí)需求和學(xué)習(xí)能力,讓每個層次的學(xué)生都得到提高。組織好課堂教學(xué),關(guān)注全體學(xué)生,注意信息反饋,調(diào)動學(xué)生的有意注意,使其保持相對穩(wěn)定性,同時(shí),激發(fā)學(xué)生的情感,使他們產(chǎn)生愉悅的心境,創(chuàng)造良好的課堂氣氛,課堂語言簡潔明了,克服了以前重復(fù)的毛病,課堂提問面向全體學(xué)生,注意引發(fā)學(xué)生學(xué)數(shù)學(xué)的興趣,課堂上講練結(jié)合,布置適量的課下作業(yè)。

  (三)批改作業(yè)、輔導(dǎo)學(xué)生與考試評價(jià)方面

  我知道“批改作業(yè)、輔導(dǎo)學(xué)生與考試評價(jià)方面”是我平時(shí)教學(xué)工作的重點(diǎn)。多年來,我一直很注重這幾方面的工作。這學(xué)期我按著學(xué)校的要求每星期讓學(xué)生做一次作業(yè)。在教學(xué)中,我要求學(xué)生把在做作業(yè)中,犯下的錯誤一一記錄下來,然后再一個個整理在錯題本上,我很明白地告訴學(xué)生,如果你要抄襲作業(yè)的話,請你不要上交。因?yàn)槲覀冏寣W(xué)生作業(yè)的目的是讓學(xué)生把學(xué)習(xí)中的問題暴露無遺,否則你的教學(xué)輔導(dǎo)就沒有了針對性。在布置課下練習(xí)方面,我一直堅(jiān)持要求學(xué)生每天做一頁練習(xí),并且不定時(shí)檢查,因?yàn)槲野l(fā)現(xiàn)我們的學(xué)生太不注重課后的復(fù)習(xí)和鞏固,這樣強(qiáng)制性的要求會使中等的學(xué)生有所提高,效果很好。尤其在后進(jìn)生的轉(zhuǎn)化上,對后進(jìn)生努力做到從友善開始,比如,多和他們交流,課下找他們了解學(xué)習(xí)情況等。從鼓勵著手,所有的人都渴望得到別人的理解和尊重,在復(fù)習(xí)備考這段時(shí)間內(nèi),利用有限的時(shí)間,給學(xué)生準(zhǔn)備了大量的復(fù)習(xí)題,并且精講精練,使學(xué)生有很大的提高,在復(fù)習(xí)課上學(xué)生學(xué)習(xí)熱情很高,學(xué)習(xí)氛圍很濃,很多學(xué)生都有所提高。

  (四)虛心向有經(jīng)驗(yàn)的教師請教。

  這學(xué)期我按著學(xué)校的要求,積極的向有經(jīng)驗(yàn)的老師學(xué)習(xí),向他們請教,使得我的教學(xué)工作有了新的提高,在此要向給予幫助的老師表示感謝,在今后的工作中繼續(xù)這樣做,使我的教學(xué)工作再上新臺階。(五)在工作中存在的不足。

  在工作中存在著一些不盡如人意的地方,如對教材中的重點(diǎn)和難點(diǎn)把握的不好,對于學(xué)生也不夠有耐性,在輔導(dǎo)中還缺乏經(jīng)驗(yàn)。

  一年的工作即將過去,我會一如既往的努力工作,在今后的教育教學(xué)工作中,我將更嚴(yán)格要求自己,努力工作,發(fā)揚(yáng)優(yōu)點(diǎn),改正缺點(diǎn),開拓前進(jìn)。

高二數(shù)學(xué)工作總結(jié) 篇3

  高二數(shù)學(xué)教師工作總結(jié)時(shí)間過得真快,轉(zhuǎn)眼又過了一學(xué)期。這是忙碌的一學(xué)期,也是充實(shí)的一學(xué)期,收獲的一學(xué)期。這一學(xué)期我負(fù)責(zé)高二(6)、(10)兩個班的教學(xué)工作。我結(jié)合學(xué)生的實(shí)際情況,有針對性地制訂了教學(xué)計(jì)劃,使教學(xué)工作有計(jì)劃,有組織,有步驟地開展,較好地完成了教學(xué)任務(wù)。現(xiàn)將本學(xué)期教學(xué)工作總結(jié)如下:

  一、充分的課前備課

  上好新課的前提是備好課,根據(jù)教材內(nèi)容及學(xué)生的實(shí)際,精心設(shè)計(jì)教學(xué)過程和擬定教學(xué)方法尤為重要,因此,我把備課當(dāng)作關(guān)鍵的關(guān)鍵。本學(xué)期,我加強(qiáng)了理論學(xué)習(xí),特別是學(xué)習(xí)了中小學(xué)常用的教學(xué)方法,包括講授法,討論法,直觀演示法,練習(xí)法,讀書指導(dǎo)法;而課堂教學(xué)常用方法包括講授式的教學(xué)方法,問題探究式教學(xué)方法,訓(xùn)練與實(shí)踐式教學(xué)方法,基于現(xiàn)代信息技術(shù)的教學(xué)方法。通過學(xué)習(xí),這也為我增加了不少自信。我本著“干什么、學(xué)什么,缺什么,補(bǔ)什么”的原則,在學(xué)期初上新課前,認(rèn)真研究教材、教參、教案,試題,吃透知識,力求每一課都備的完美。課后,我

  二、高效率的課堂教學(xué)

  上好課就要抓好每一次課堂教學(xué)。在教學(xué)中,我注重理清知識的條理和邏輯,堅(jiān)持每個知識點(diǎn)講清楚,分析透,通過多種方式將課本知識化難為易,不給學(xué)生吃夾生飯,增加情景教學(xué),努力增強(qiáng)課堂教學(xué)的效果。學(xué)習(xí)了課堂教學(xué)常用方法包括講授式的教學(xué)方法,問題探究式教學(xué)方法,訓(xùn)練與實(shí)踐式教學(xué)方法,基于現(xiàn)代信息技術(shù)的教學(xué)方法后,在課堂上我有意識選擇去實(shí)踐些教學(xué)方法。

  根據(jù)數(shù)學(xué)課程的特點(diǎn),實(shí)施較多的是講授式的教學(xué)方法和問題探究式教學(xué)方法,比如概念性課題,一般采用問題探究式教學(xué)方法。我在上選修2-1《導(dǎo)數(shù)的概念》這一課時(shí),就采用了問題探究式教學(xué)方法。新課引入通過提出問題1:上一節(jié)課我們的學(xué)習(xí)跳水問題時(shí)知道,平均速度能描述運(yùn)動員某一時(shí)刻的運(yùn)動狀態(tài)嗎?學(xué)生作答,得出能描述的是瞬時(shí)速度。問題2:如何求運(yùn)動員的瞬時(shí)速度?你能舉例嗎?比如,t=2時(shí)的瞬時(shí)速度是多少?引導(dǎo)學(xué)生閱讀教材p74表格。問題3:t越來越小,當(dāng)t趨于0時(shí),平均速度v有什么樣的變化趨勢?學(xué)生得出當(dāng)t趨于0時(shí),平均速度都趨近于一個確定的值13.1,所以,運(yùn)動員在t=2時(shí)的瞬時(shí)速度是13.1m/s。問題4:以上求得瞬時(shí)速度的過程體現(xiàn)了一個什么思想?逼近的思想。問題5:你能得出一個什么結(jié)論嗎?學(xué)生小結(jié):局部以勻速代替變速,以平均速度代替瞬時(shí)速度,然后通過取極限,從瞬時(shí)速度的近似值過渡到瞬時(shí)速度的精確值。問題6:函數(shù)f(x)在x=xo處的瞬時(shí)變化率怎么樣表示?學(xué)生閱讀教材得出函數(shù)yy=f(x)在x=xo的導(dǎo)數(shù)。知識點(diǎn)講授完后對昨天作業(yè)進(jìn)行講評,同時(shí)增加了一問:求它的導(dǎo)數(shù);最后完成了一道練習(xí)題。而例題課、練習(xí)課則常常采用講授式的教學(xué)方法,以教師講,學(xué)生練習(xí)為主。=f(x)在x=x0處的瞬時(shí)變化率是:

  三、完善的課后反思

  看過一句這樣的話“思之則活,思活則深,思深則透,思透則新,思新則進(jìn)”。學(xué)期初我在中山教師博客和搜狐博客開通了教師博客,把自己的教學(xué)反思放到博客上。堅(jiān)持一學(xué)期下來,日志總數(shù)為58篇,這都是自己反思的成果,每一篇都反思自己的教學(xué)行為,總結(jié)教學(xué)的得失與成敗,對整個教學(xué)過程進(jìn)行回顧、分析和審視,才能形成自我反思的意識和自我監(jiān)控的能力,才能不斷豐富自我素養(yǎng),提升自我發(fā)展能力,逐步完善教學(xué)藝術(shù),以期實(shí)現(xiàn)教師自身的教學(xué)水平提升。

  一學(xué)期來,我的教學(xué)工作中取得了一定的成績,個人的教學(xué)也有了一點(diǎn)提高,但是與現(xiàn)代教學(xué)質(zhì)量的要求還有不小的距離,自身尚存在一定的不足,如:在教學(xué)工作中課堂語言不夠生動等問題,這些問題尚需在今后的教學(xué)工作中不斷改進(jìn)和完善。

  編輯提醒:請注意查看“高二數(shù)學(xué)教師工作總結(jié)”一文是否有分頁內(nèi)容。原文地址

高二數(shù)學(xué)工作總結(jié) 篇4

  物理實(shí)驗(yàn)是中學(xué)物理教學(xué)的重要內(nèi)容,通過實(shí)驗(yàn)教學(xué),幫助學(xué)生理解、掌握物理知識,學(xué)會實(shí)驗(yàn)技能、儀器的使用和操作,學(xué)習(xí)物理學(xué)研究問題的方法。物理實(shí)驗(yàn)的內(nèi)容,也是物理課程標(biāo)準(zhǔn)中的重要組成部分。物理實(shí)驗(yàn)?zāi)芰σ彩且疾榈囊豁?xiàng)重要能力。

  為了提高學(xué)生的實(shí)驗(yàn)操作能力,深入理解物理理論知識、物理原理、物理研究方法。我校非常重視實(shí)驗(yàn)教學(xué),通過幾年的努力,我校已經(jīng)具有先進(jìn)的現(xiàn)代化的實(shí)驗(yàn)室。本期我校充分發(fā)揮了實(shí)驗(yàn)優(yōu)勢,加強(qiáng)實(shí)驗(yàn)教學(xué)工作。培養(yǎng)了學(xué)生的實(shí)驗(yàn)?zāi)芰Α?/p>

  本期中高中二年級按排了六個學(xué)生分組實(shí)驗(yàn):《探究決定電荷間的相互作用的因素》、《認(rèn)識和練習(xí)使用示波器》、《多用表的使用》、《探究電阻定律》、《測量電源的電動勢和內(nèi)阻》、《描給小燈泡伏安特性曲線》。

  使學(xué)生在實(shí)驗(yàn)中做到了“一能三會”:能在理解的基礎(chǔ)上獨(dú)立完成實(shí)驗(yàn),明確實(shí)驗(yàn)?zāi)康模斫夂涂刂茖?shí)驗(yàn)條件;會用在實(shí)驗(yàn)中學(xué)過的實(shí)驗(yàn)方法;會正確使用在這些實(shí)驗(yàn)中用過的儀器會觀察,分析實(shí)驗(yàn)現(xiàn)象,處理實(shí)驗(yàn)數(shù)據(jù),并得出結(jié)論。學(xué)好物理基礎(chǔ)知識,物理不是一門以實(shí)驗(yàn)為基礎(chǔ)的自然科學(xué)。本期有驗(yàn)證性實(shí)驗(yàn):《驗(yàn)證動量守恒定律》,實(shí)驗(yàn)中要求學(xué)生在理解掌握規(guī)律的'基礎(chǔ)上去做實(shí)驗(yàn),在實(shí)驗(yàn)的過程中加深和鞏固動量守恒定律,學(xué)習(xí)實(shí)驗(yàn)的方法,儀器的使用和操作。物理知識的學(xué)習(xí)和物理實(shí)驗(yàn)是相互補(bǔ)充、相輔相成、密不可分的兩種學(xué)習(xí)方式。要求學(xué)生要克服只重視物理理論的學(xué)習(xí),輕視實(shí)驗(yàn)操作的傾向,這是導(dǎo)致學(xué)生實(shí)驗(yàn)?zāi)芰Σ桓叩囊粋重要因素。對實(shí)驗(yàn)方法的學(xué)習(xí)和掌握,應(yīng)該在實(shí)驗(yàn)教學(xué)中突出出來。

  在實(shí)驗(yàn)教學(xué)過程中重視了對基本儀器的使用和基本實(shí)驗(yàn)方法。重視了實(shí)際操作能力的培養(yǎng)。重視了實(shí)驗(yàn)數(shù)據(jù)的處理:對實(shí)驗(yàn)數(shù)據(jù)進(jìn)行正確處理,從面得出正確的實(shí)驗(yàn)結(jié)果,是實(shí)驗(yàn)全過程的一個重要環(huán)節(jié)。

  深刻理解、熟練掌握實(shí)驗(yàn)原理:實(shí)驗(yàn)原理是實(shí)驗(yàn)的核心。實(shí)驗(yàn)方法、實(shí)驗(yàn)步驟、儀器的選擇、數(shù)據(jù)的處理等一切和實(shí)驗(yàn)的有關(guān)問題都是從實(shí)驗(yàn)原理中派生出來的。實(shí)驗(yàn)原理和方法貫穿于實(shí)驗(yàn)的全過程,只有深刻理解了它,才能正確選擇實(shí)驗(yàn)器材、安排實(shí)驗(yàn)步驟、進(jìn)行操作和觀測、處理實(shí)驗(yàn)數(shù)據(jù)并得出結(jié)論,也才能具備遷移實(shí)驗(yàn)方法進(jìn)行實(shí)驗(yàn)設(shè)計(jì)的能力。只要緊緊抓住實(shí)驗(yàn)原理,用許多問題會迎刃而解。

高二數(shù)學(xué)工作總結(jié) 篇5

  上個學(xué)期,根據(jù)需要,學(xué)校安排我上高二數(shù)學(xué)文科,在這一學(xué)期里我從各方面嚴(yán)格要求自己,在教學(xué)上虛心向老教師請教,結(jié)合本校和班級學(xué)生的實(shí)際情況,針對性的開展教學(xué)工作,使工作有計(jì)劃,有組織,有步驟。經(jīng)過了一學(xué)期,我對教學(xué)工作有了如下感想:

  一、認(rèn)真?zhèn)湔n,做到既備學(xué)生又備教材與備教法。

  上學(xué)期我根據(jù)教材內(nèi)容及學(xué)生的實(shí)際情況設(shè)計(jì)課程教學(xué),擬定教學(xué)方法,并對教學(xué)過程中遇到的問題盡可能的預(yù)先考慮到,認(rèn)真寫好教案。每一課都做到有備而去,每堂課都在課前做好充分的準(zhǔn)備,課后及時(shí)對該課作出小結(jié),并認(rèn)真整理每一章節(jié)的知識要點(diǎn),幫助學(xué)生進(jìn)行歸納總結(jié)。

  二、增強(qiáng)上課技能,提高教學(xué)質(zhì)量。

  增強(qiáng)上課技能,提高教學(xué)質(zhì)量是我們每一名新教師不斷努力的目標(biāo)。因?yàn)槊鎸Φ氖俏目粕A(chǔ)普遍比較差,所以我主要是立足于基礎(chǔ),讓學(xué)生學(xué)得輕松,學(xué)得愉快。注意精講精練,在課堂上講得盡量少些,而讓學(xué)生自己動口動手動腦盡量多些;同時(shí)在每一堂課上都充分考慮每一個層次的學(xué)生學(xué)習(xí)需求和接受能力,讓各個層次的學(xué)生都得到提高。

  三、虛心向其他老師學(xué)習(xí),在教學(xué)上做到有疑必問。

  在每個章節(jié)的學(xué)習(xí)上都積極征求其他有經(jīng)驗(yàn)老師的意見,學(xué)習(xí)他們的方法。同時(shí)多聽老教師的課,做到邊聽邊學(xué),給自己不斷充電,彌補(bǔ)自己在教學(xué)上的不足,征求他們的'意見,改進(jìn)教學(xué)工作。

  四、認(rèn)真批改作業(yè)、布置作業(yè)有針對性,有層次性。

  作業(yè)是學(xué)生對所學(xué)知識鞏固的過程。為了做到布置作業(yè)有針對性,有層次性,我常常多方面的搜集資料,對各種輔導(dǎo)資料進(jìn)行篩選,力求每一次練習(xí)都能讓學(xué)生起到最大的效果。同時(shí)對學(xué)生的作業(yè)批改及時(shí)、認(rèn)真,并分析學(xué)生的作業(yè)情況,將他們在作業(yè)過程出現(xiàn)的問題及時(shí)評講,并針對反映出的情況及時(shí)改進(jìn)自己的教學(xué)方法,做到有的放矢。

  然而,在肯定成績、總結(jié)經(jīng)驗(yàn)的同時(shí),我清楚地認(rèn)識到我所獲得的教學(xué)經(jīng)驗(yàn)還是膚淺的,在教學(xué)中存在的問題也不容忽視,也有一些困惑有待解決今后我將努力工作,積極向老老師學(xué)習(xí)以提高自己的教學(xué)水平。

高二數(shù)學(xué)工作總結(jié) 篇6

  一、直線與圓:

  1、直線的傾斜角的范圍是

  在平面直角坐標(biāo)系中,對于一條與軸相交的直線,如果把軸繞著交點(diǎn)按逆時(shí)針方向轉(zhuǎn)到和直線重合時(shí)所轉(zhuǎn)的最小正角記為,就叫做直線的傾斜角。當(dāng)直線與軸重合或平行時(shí),規(guī)定傾斜角為0;

  2、斜率:已知直線的傾斜角為α,且α≠90°,則斜率k=tanα。

  過兩點(diǎn)(x1,y1),(x2,y2)的直線的斜率k=(y2-y1)/(x2-x1),另外切線的斜率用求導(dǎo)的方法。

  3、直線方程:⑴點(diǎn)斜式:直線過點(diǎn)斜率為,則直線方程為,

  ⑵斜截式:直線在軸上的截距為和斜率,則直線方程為

  4、,①∥,;②。

  直線與直線的位置關(guān)系:

  (1)平行A1/A2=B1/B2注意檢驗(yàn)(2)垂直A1A2+B1B2=0

  5、點(diǎn)到直線的距離公式;

  兩條平行線與的距離是

  6、圓的標(biāo)準(zhǔn)方程:。⑵圓的一般方程:

  注意能將標(biāo)準(zhǔn)方程化為一般方程

  7、過圓外一點(diǎn)作圓的切線,一定有兩條,如果只求出了一條,那么另外一條就是與軸垂直的直線。

  8、直線與圓的位置關(guān)系,通常轉(zhuǎn)化為圓心距與半徑的關(guān)系,或者利用垂徑定理,構(gòu)造直角三角形解決弦長問題。①相離②相切③相交

  9、解決直線與圓的關(guān)系問題時(shí),要充分發(fā)揮圓的平面幾何性質(zhì)的作用(如半徑、半弦長、弦心距構(gòu)成直角三角形)直線與圓相交所得弦長

  二、圓錐曲線方程:

  1、橢圓:①方程(a>b>0)注意還有一個;②定義:|PF1|+|PF2|=2a>2c;③e=④長軸長為2a,短軸長為2b,焦距為2c;a2=b2+c2;

  2、雙曲線:①方程(a,b>0)注意還有一個;②定義:||PF1|-|PF2||=2a0)的圖象與零點(diǎn)的關(guān)系

  三二分法

  對于在區(qū)間[a,b]上連續(xù)不斷且f(a)·f(b)<0的函數(shù)y=f(x),通過不斷地把函數(shù)f(x)的零點(diǎn)所在的區(qū)間一分為二,使區(qū)間的兩個端點(diǎn)逐步逼近零點(diǎn),進(jìn)而得到零點(diǎn)近似值的方法叫做二分法。

  1、函數(shù)的零點(diǎn)不是點(diǎn):

  函數(shù)y=f(x)的零點(diǎn)就是方程f(x)=0的實(shí)數(shù)根,也就是函數(shù)y=f(x)的圖象與x軸交點(diǎn)的橫坐標(biāo),所以函數(shù)的零點(diǎn)是一個數(shù),而不是一個點(diǎn).在寫函數(shù)零點(diǎn)時(shí),所寫的一定是一個數(shù)字,而不是一個坐標(biāo)。

  2、對函數(shù)零點(diǎn)存在的判斷中,必須強(qiáng)調(diào):

  (1)、f(x)在[a,b]上連續(xù);

  (2)、f(a)·f(b)<0;

  (3)、在(a,b)內(nèi)存在零點(diǎn)。

  這是零點(diǎn)存在的一個充分條件,但不必要。

  3、對于定義域內(nèi)連續(xù)不斷的函數(shù),其相鄰兩個零點(diǎn)之間的所有函數(shù)值保持同號。

  利用函數(shù)零點(diǎn)的存在性定理判斷零點(diǎn)所在的區(qū)間時(shí),首先看函數(shù)y=f(x)在區(qū)間[a,b]上的圖象是否連續(xù)不斷,再看是否有f(a)·f(b)<0.若有,則函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)必有零點(diǎn)。

  四判斷函數(shù)零點(diǎn)個數(shù)的常用方法

  1、解方程法:

  令f(x)=0,如果能求出解,則有幾個解就有幾個零點(diǎn)。

  2、零點(diǎn)存在性定理法:

  利用定理不僅要判斷函數(shù)在區(qū)間[a,b]上是連續(xù)不斷的曲線,且f(a)·f(b)<0,還必須結(jié)合函數(shù)的圖象與性質(zhì)(如單調(diào)性、奇偶性、周期性、對稱性)才能確定函數(shù)有多少個零點(diǎn)。

  3、數(shù)形結(jié)合法:

  轉(zhuǎn)化為兩個函數(shù)的圖象的交點(diǎn)個數(shù)問題.先畫出兩個函數(shù)的圖象,看其交點(diǎn)的個數(shù),其中交點(diǎn)的個數(shù),就是函數(shù)零點(diǎn)的個數(shù)。

  已知函數(shù)有零點(diǎn)(方程有根)求參數(shù)取值常用的方法

  1、直接法:

  直接根據(jù)題設(shè)條件構(gòu)建關(guān)于參數(shù)的不等式,再通過解不等式確定參數(shù)范圍。

  2、分離參數(shù)法:

  先將參數(shù)分離,轉(zhuǎn)化成求函數(shù)值域問題加以解決。

  3、數(shù)形結(jié)合法:

  先對解析式變形,在同一平面直角坐標(biāo)系中,畫出函數(shù)的圖象,然后數(shù)形結(jié)合求解。

高二數(shù)學(xué)工作總結(jié) 篇7

  定義:

  x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當(dāng)直線與x軸平行或重合時(shí),我們規(guī)定它的傾斜角為0度。

  范圍:

  傾斜角的取值范圍是0°≤α<180°。

  理解:

  (1)注意“兩個方向”:直線向上的方向、x軸的正方向;

  (2)規(guī)定當(dāng)直線和x軸平行或重合時(shí),它的傾斜角為0度。

  意義:

  ①直線的傾斜角,體現(xiàn)了直線對x軸正向的傾斜程度;

  ②在平面直角坐標(biāo)系中,每一條直線都有一個確定的傾斜角;

  ③傾斜角相同,未必表示同一條直線。

  公式:

  k=tanα

  k>0時(shí)α∈(0°,90°)

  k<0時(shí)α∈(90°,180°)

  k=0時(shí)α=0°

  當(dāng)α=90°時(shí)k不存在

  ax+by+c=0(a≠0)傾斜角為A,

  則tanA=-a/b,

  A=arctan(-a/b)

  當(dāng)a≠0時(shí),

  傾斜角為90度,即與X軸垂直

高二數(shù)學(xué)工作總結(jié) 篇8

  一、直線與圓:

  1、直線的傾斜角的范圍是

  在平面直角坐標(biāo)系中,對于一條與軸相交的直線,如果把軸繞著交點(diǎn)按逆時(shí)針方向轉(zhuǎn)到和直線重合時(shí)所轉(zhuǎn)的最小正角記為,就叫做直線的傾斜角。當(dāng)直線與軸重合或平行時(shí),規(guī)定傾斜角為0;

  2、斜率:已知直線的傾斜角為α,且α≠90°,則斜率k=tanα.

  過兩點(diǎn)(_1,y1),(_2,y2)的直線的斜率k=(y2-y1)/(_2-_1),另外切線的斜率用求導(dǎo)的.方法。

  3、直線方程:⑴點(diǎn)斜式:直線過點(diǎn)斜率為,則直線方程為,

  ⑵斜截式:直線在軸上的截距為和斜率,則直線方程為

  4、直線與直線的位置關(guān)系:

  (1)平行A1/A2=B1/B2注意檢驗(yàn)(2)垂直A1A2+B1B2=0

  5、點(diǎn)到直線的距離公式;

  兩條平行線與的距離是

  6、圓的標(biāo)準(zhǔn)方程:.⑵圓的一般方程:

  注意能將標(biāo)準(zhǔn)方程化為一般方程

  7、過圓外一點(diǎn)作圓的切線,一定有兩條,如果只求出了一條,那么另外一條就是與軸垂直的直線.

  8、直線與圓的位置關(guān)系,通常轉(zhuǎn)化為圓心距與半徑的關(guān)系,或者利用垂徑定理,構(gòu)造直角三角形解決弦長問題.①相離②相切③相交

  9、解決直線與圓的關(guān)系問題時(shí),要充分發(fā)揮圓的平面幾何性質(zhì)的作用(如半徑、半弦長、弦心距構(gòu)成直角三角形)直線與圓相交所得弦長

  二、圓錐曲線方程:

  1、橢圓:①方程(a>b>0)注意還有一個;②定義:|PF1|+|PF2|=2a>2c;③e=④長軸長為2a,短軸長為2b,焦距為2c;a2=b2+c2;

  2、雙曲線:①方程(a,b>0)注意還有一個;②定義:||PF1|-|PF2||=2a<2c;③e=;④實(shí)軸長為2a,虛軸長為2b,焦距為2c;漸進(jìn)線或c2=a2+b2

  3、拋物線:①方程y2=2p_注意還有三個,能區(qū)別開口方向;②定義:|PF|=d焦點(diǎn)F(,0),準(zhǔn)線_=-;③焦半徑;焦點(diǎn)弦=_1+_2+p;

  4、直線被圓錐曲線截得的弦長公式:

  三、直線、平面、簡單幾何體:

  1、學(xué)會三視圖的分析:

  2、斜二測畫法應(yīng)注意的地方:

  (1)在已知圖形中取互相垂直的軸O_、Oy。畫直觀圖時(shí),把它畫成對應(yīng)軸o'_'、o'y'、使∠_'o'y'=45°(或135°);

  (2)平行于_軸的線段長不變,平行于y軸的線段長減半.

  (3)直觀圖中的45度原圖中就是90度,直觀圖中的90度原圖一定不是90度.

  3、表(側(cè))面積與體積公式:

  ⑴柱體:①表面積:S=S側(cè)+2S底;②側(cè)面積:S側(cè)=;③體積:V=S底h

  ⑵錐體:①表面積:S=S側(cè)+S底;②側(cè)面積:S側(cè)=;③體積:V=S底h:

  ⑶臺體①表面積:S=S側(cè)+S上底S下底②側(cè)面積:S側(cè)=

  ⑷球體:①表面積:S=;②體積:V=

  4、位置關(guān)系的證明(主要方法):注意立體幾何證明的書寫

  (1)直線與平面平行:①線線平行線面平行;②面面平行線面平行。

  (2)平面與平面平行:①線面平行面面平行。

  (3)垂直問題:線線垂直線面垂直面面垂直。核心是線面垂直:垂直平面內(nèi)的兩條相交直線

  5、求角:(步驟-------Ⅰ.找或作角;Ⅱ.求角)

  ⑴異面直線所成角的求法:平移法:平移直線,構(gòu)造三角形;

  ⑵直線與平面所成的角:直線與射影所成的角

  四、導(dǎo)數(shù):導(dǎo)數(shù)的意義-導(dǎo)數(shù)公式-導(dǎo)數(shù)應(yīng)用(極值最值問題、曲線切線問題)

  1、導(dǎo)數(shù)的定義:在點(diǎn)處的導(dǎo)數(shù)記作.

  2.導(dǎo)數(shù)的幾何物理意義:曲線在點(diǎn)處切線的斜率

  ①k=f/(_0)表示過曲線y=f(_)上P(_0,f(_0))切線斜率。V=s/(t)表示即時(shí)速度。a=v/(t)表示加速度。

  3.常見函數(shù)的導(dǎo)數(shù)公式:①;②;③;

  ⑤;⑥;⑦;⑧。

  4.導(dǎo)數(shù)的四則運(yùn)算法則:

  5.導(dǎo)數(shù)的應(yīng)用:

  (1)利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性:設(shè)函數(shù)在某個區(qū)間內(nèi)可導(dǎo),如果,那么為增函數(shù);如果,那么為減函數(shù);

  注意:如果已知為減函數(shù)求字母取值范圍,那么不等式恒成立。

  (2)求極值的步驟:

  ①求導(dǎo)數(shù);

  ②求方程的根;

  ③列表:檢驗(yàn)在方程根的左右的符號,如果左正右負(fù),那么函數(shù)在這個根處取得極大值;如果左負(fù)右正,那么函數(shù)在這個根處取得極小值;

  (3)求可導(dǎo)函數(shù)值與最小值的步驟:

  ⅰ求的根;ⅱ把根與區(qū)間端點(diǎn)函數(shù)值比較,的為值,最小的是最小值。

  五、常用邏輯用語:

  1、四種命題:

  ⑴原命題:若p則q;⑵逆命題:若q則p;⑶否命題:若p則q;⑷逆否命題:若q則p

  注:1、原命題與逆否命題等價(jià);逆命題與否命題等價(jià)。判斷命題真假時(shí)注意轉(zhuǎn)化。

  2、注意命題的否定與否命題的區(qū)別:命題否定形式是;否命題是.命題“或”的否定是“且”;“且”的否定是“或”.

  3、邏輯聯(lián)結(jié)詞:

  ⑴且(and):命題形式pq;pqpqpqp

  ⑵或(or):命題形式pq;真真真真假

  ⑶非(not):命題形式p.真假假真假

  假真假真真

  假假假假真

  “或命題”的真假特點(diǎn)是“一真即真,要假全假”;

  “且命題”的真假特點(diǎn)是“一假即假,要真全真”;

  “非命題”的真假特點(diǎn)是“一真一假”

  4、充要條件

  由條件可推出結(jié)論,條件是結(jié)論成立的充分條件;由結(jié)論可推出條件,則條件是結(jié)論成立的必要條件。

  5、全稱命題與特稱命題:

  短語“所有”在陳述中表示所述事物的全體,邏輯中通常叫做全稱量詞,并用符號表示。含有全體量詞的命題,叫做全稱命題。

  短語“有一個”或“有些”或“至少有一個”在陳述中表示所述事物的個體或部分,邏輯中通常叫做存在量詞,并用符號表示,含有存在量詞的命題,叫做存在性命題。

高二數(shù)學(xué)工作總結(jié) 篇9

  一、學(xué)習(xí)目標(biāo):

  知識與技能:理解直線與平面、平面與平面平行的性質(zhì)定理的含義,并會應(yīng)用性質(zhì)解決問題

  過程與方法:能應(yīng)用文字語言、符號語言、圖形語言準(zhǔn)確地描述直線與平面、平面與平面的性質(zhì)定理

  情感態(tài)度與價(jià)值觀:通過自主學(xué)習(xí)、主動參與、積極探究的學(xué)習(xí)過程,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的自信心和積極性,培養(yǎng)學(xué)生良好的思維習(xí)慣,滲透化歸與轉(zhuǎn)化的數(shù)學(xué)思想,體會事物之間相互轉(zhuǎn)化和理論聯(lián)系實(shí)際的辯證唯物主義思想方法

  二、學(xué)習(xí)重、難點(diǎn)

  學(xué)習(xí)重點(diǎn):直線與平面、平面與平面平行的性質(zhì)及其應(yīng)用

  學(xué)習(xí)難點(diǎn):將空間問題轉(zhuǎn)化為平面問題的方法,

  三、學(xué)法指導(dǎo)及要求:

  1、限定45分鐘完成,注意逐字逐句仔細(xì)審題,認(rèn)真思考、獨(dú)立規(guī)范作答,不會的先繞過,做好記號。

  2、把學(xué)案中自己易忘、易出錯的知識點(diǎn)和疑難問題以及解題方法規(guī)律,及時(shí)整理在解題本,多復(fù)習(xí)記憶。3、A:自主學(xué)習(xí);B:合作探究;C:能力提升4、小班、重點(diǎn)班完成全部,平行班完成A.B類題

  四、知識鏈接:

  1.空間直線與直線的位置關(guān)系

  2.直線與平面的位置關(guān)系

  3.平面與平面的位置關(guān)系

  4.直線與平面平行的判定定理的符號表示

  5.平面與平面平行的判定定理的符號表示

  五、學(xué)習(xí)過程:

  A問題1:

  1)如果一條直線與一個平面平行,那么這條直線與這個平面內(nèi)的直線有哪些位置關(guān)系?

  (觀察長方體)

  2)如果一條直線和一個平面平行,如何在這個平面內(nèi)做一條直線與已知直線平行?

  (可觀察教室內(nèi)燈管和地面)

  A問題2:一條直線與平面平行,這條直線和這個平面內(nèi)直線的位置關(guān)系有幾種可能?

  A問題3:如果一條直線與平面α平行,在什么條件下直線與平面α內(nèi)的直線平行呢?

  由于直線與平面α內(nèi)的任何直線無公共點(diǎn),所以過直線的某一平面,若與平面α相交,則直線就平行于這條交線

  B自主探究1:已知:∥α,β,α∩β=b。求證:∥b。

  直線與平面平行的性質(zhì)定理:一條直線與一個平面平行,則過這條直線的任一平面與此平面的交線與該直線平行

  符號語言:

  線面平行性質(zhì)定理作用:證明兩直線平行

  思想:線面平行線線平行

高二數(shù)學(xué)工作總結(jié) 篇10

  一、不等式的性質(zhì)

  1.兩個實(shí)數(shù)a與b之間的大小關(guān)系

  2.不等式的性質(zhì)

  (4) (乘法單調(diào)性)

  3.絕對值不等式的性質(zhì)

  (2)如果a>0,那么

  (3)|ab|=|a||b|.

  (5)|a|-|b|≤|a±b|≤|a|+|b|.

  (6)|a1+a2+……+an|≤|a1|+|a2|+……+|an|.

  二、不等式的證明

  1.不等式證明的依據(jù)

  (2)不等式的性質(zhì)(略)

  (3)重要不等式:①|(zhì)a|≥0;a2≥0;(a-b)2≥0(a、b∈R)

  ②a2+b2≥2ab(a、b∈R,當(dāng)且僅當(dāng)a=b時(shí)取“=”號)

  2.不等式的證明方法

  (1)比較法:要證明a>b(a<b),只要證明a-b>0(a-b<0),這種證明不等式的方法叫做比較法.

  用比較法證明不等式的步驟是:作差——變形——判斷符號.

  (2)綜合法:從已知條件出發(fā),依據(jù)不等式的性質(zhì)和已證明過的不等式,推導(dǎo)出所要證明的不等式成立,這種證明不等式的方法叫做綜合法.

  (3)分析法:從欲證的不等式出發(fā),逐步分析使這不等式成立的充分條件,直到所需條件已判斷為正確時(shí),從而斷定原不等式成立,這種證明不等式的方法叫做分析法.

  證明不等式除以上三種基本方法外,還有反證法、數(shù)學(xué)歸納法等.

  三、解不等式

  1.解不等式問題的分類

  (1)解一元一次不等式.

  (2)解一元二次不等式.

  (3)可以化為一元一次或一元二次不等式的不等式.

  ①解一元高次不等式;

  ②解分式不等式;

  ③解無理不等式;

  ④解指數(shù)不等式;

  ⑤解對數(shù)不等式;

  ⑥解帶絕對值的不等式;

  ⑦解不等式組.

  2.解不等式時(shí)應(yīng)特別注意下列幾點(diǎn):

  (1)正確應(yīng)用不等式的基本性質(zhì).

  (2)正確應(yīng)用冪函數(shù)、指數(shù)函數(shù)和對數(shù)函數(shù)的增、減性.

  (3)注意代數(shù)式中未知數(shù)的取值范圍.

  3.不等式的同解性

  (5)|f(x)|<g(x)與-g(x)<f(x)<g(x)同解.(g(x)>0)

  (6)|f(x)|>g(x)①與f(x)>g(x)或f(x)<-g(x)(其中g(shù)(x)≥0)同解;②與g(x)<0同解.

  (9)當(dāng)a>1時(shí),af(x)>ag(x)與f(x)>g(x)同解,當(dāng)0<a<1時(shí),af(x)>ag(x)與f(x)<g(x)同

高二數(shù)學(xué)工作總結(jié) 篇11

  在中國古代把數(shù)學(xué)叫算術(shù),又稱算學(xué),最后才改為數(shù)學(xué)。

  1.任意角

  (1)角的分類:

  ①按旋轉(zhuǎn)方向不同分為正角、負(fù)角、零角。

  ②按終邊位置不同分為象限角和軸線角。

  (2)終邊相同的角:

  終邊與角相同的角可寫成+k360(kZ)。

  (3)弧度制:

  ①1弧度的角:把長度等于半徑長的弧所對的圓心角叫做1弧度的角。

  ②規(guī)定:正角的弧度數(shù)為正數(shù),負(fù)角的弧度數(shù)為負(fù)數(shù),零角的弧度數(shù)為零,||=,l是以角作為圓心角時(shí)所對圓弧的長,r為半徑。

  ③用弧度做單位來度量角的制度叫做弧度制。比值與所取的r的大小無關(guān),僅與角的大小有關(guān)。

  ④弧度與角度的換算:360弧度;180弧度。

  ⑤弧長公式:l=||r,扇形面積公式:S扇形=lr=||r2.

  2.任意角的三角函數(shù)

  (1)任意角的三角函數(shù)定義:

  設(shè)是一個任意角,角的終邊與單位圓交于點(diǎn)P(x,y),那么角的正弦、余弦、正切分別是:sin =y,cos =x,tan =,它們都是以角為自變量,以單位圓上點(diǎn)的坐標(biāo)或坐標(biāo)的比值為函數(shù)值的函數(shù)。

  (2)三角函數(shù)在各象限內(nèi)的符號口訣是:一全正、二正弦、三正切、四余弦。

  3.三角函數(shù)線

  設(shè)角的頂點(diǎn)在坐標(biāo)原點(diǎn),始邊與x軸非負(fù)半軸重合,終邊與單位圓相交于點(diǎn)P,過P作PM垂直于x軸于M。由三角函數(shù)的定義知,點(diǎn)P的坐標(biāo)為(cos_,sin_),即P(cos_,sin_),其中cos =OM,sin =MP,單位圓與x軸的正半軸交于點(diǎn)A,單位圓在A點(diǎn)的切線與的終邊或其反向延長線相交于點(diǎn)T,則tan =AT。我們把有向線段OM、MP、AT叫做的余弦線、正弦線、正切線。

高二數(shù)學(xué)工作總結(jié) 篇12

  空間兩條直線只有三種位置關(guān)系:平行、相交、異面

  1、按是否共面可分為兩類:

  (1)共面:平行、相交

  (2)異面:

  異面直線的定義:不同在任何一個平面內(nèi)的兩條直線或既不平行也不相交。

  異面直線判定定理:用平面內(nèi)一點(diǎn)與平面外一點(diǎn)的直線,與平面內(nèi)不經(jīng)過該點(diǎn)的直線是異面直線。

  兩異面直線所成的角:范圍為(0°,90°)esp.空間向量法

  兩異面直線間距離:公垂線段(有且只有一條)esp.空間向量法

  2、若從有無公共點(diǎn)的角度看可分為兩類:

  (1)有且僅有一個公共點(diǎn)——相交直線;

  (2)沒有公共點(diǎn)——平行或異面

  直線和平面的位置關(guān)系:

  直線和平面只有三種位置關(guān)系:在平面內(nèi)、與平面相交、與平面平行

  ①直線在平面內(nèi)——有無數(shù)個公共點(diǎn)

  ②直線和平面相交——有且只有一個公共點(diǎn)

  直線與平面所成的角:平面的一條斜線和它在這個平面內(nèi)的射影所成的銳角。

高二數(shù)學(xué)工作總結(jié) 篇13

  一、直線與圓:

  1、直線的傾斜角的范圍是在平面直角坐標(biāo)系中,對于一條與軸相交的直線,如果把軸繞著交點(diǎn)按逆時(shí)針方向轉(zhuǎn)到和直線重合時(shí)所轉(zhuǎn)的最小正角記為,就叫做直線的傾斜角。當(dāng)直線與軸重合或平行時(shí),規(guī)定傾斜角為0;

  2、斜率:已知直線的傾斜角為α,且α≠90°,則斜率k=tanα.過兩點(diǎn)(x1,y1),(x2,y2)的直線的斜率k=(y2-y1)/(x2-x1),另外切線的斜率用求導(dǎo)的方法。

  3、直線方程:

  (1)點(diǎn)斜式:直線過點(diǎn)斜率為,則直線方程為

  (2)斜截式:直線在軸上的截距為和斜率,則直線方程為

  4、直線與直線的位置關(guān)系:

  (1)平行A1/A2=B1/B2注意檢驗(yàn)

  (2)垂直A1A2+B1B2=0

  5、點(diǎn)到直線的距離公式;

  兩條平行線與的距離是

  6、圓的標(biāo)準(zhǔn)方程:圓的一般方程:注意能將標(biāo)準(zhǔn)方程化為一般方程

  7、過圓外一點(diǎn)作圓的切線,一定有兩條,如果只求出了一條,那么另外一條就是與軸垂直的直線.

  8、直線與圓的位置關(guān)系,通常轉(zhuǎn)化為圓心距與半徑的關(guān)系,或者利用垂徑定理,構(gòu)造直角三角形解決弦長問題.①相離②相切③相交

  9、解決直線與圓的關(guān)系問題時(shí),要充分發(fā)揮圓的平面幾何性質(zhì)的作用(如半徑、半弦長、弦心距構(gòu)成直角三角形)直線與圓相交所得弦長

  二、圓錐曲線方程:

  1、橢圓:①方程(a>b>0)注意還有一個;②定義:|PF1|+|PF2|=2a>2c;③e=④長軸長為2a,短軸長為2b,焦距為2c;a2=b2+c2;

  2、雙曲線:①方程(a,b>0)注意還有一個;②定義:||PF1|-|PF2||=2a0)的圖象與零點(diǎn)的關(guān)系

  三二分法

  對于在區(qū)間[a,b]上連續(xù)不斷且f(a)·f(b)Lα

  A∈α

  B∈α

  公理1作用:判斷直線是否在平面內(nèi)

  (2)公理2:過不在一條直線上的三點(diǎn),有且只有一個平面。

  符號表示為:A、B、C三點(diǎn)不共線=>有且只有一個平面α,

  使A∈α、B∈α、C∈α。

  公理2作用:確定一個平面的依據(jù)。

  (3)公理3:如果兩個不重合的平面有一個公共點(diǎn),那么它們有且只有一條過該點(diǎn)的公共直線。

  符號表示為:P∈α∩β=>α∩β=L,且P∈L

  公理3作用:判定兩個平面是否相交的依據(jù)

  2.1.2空間中直線與直線之間的位置關(guān)系

  1空間的兩條直線有如下三種關(guān)系:

  共面直線

  相交直線:同一平面內(nèi),有且只有一個公共點(diǎn);

  平行直線:同一平面內(nèi),沒有公共點(diǎn);

  異面直線:不同在任何一個平面內(nèi),沒有公共點(diǎn)。

  2公理4:平行于同一條直線的兩條直線互相平行。

  符號表示為:設(shè)a、b、c是三條直線

  a∥b

  c∥b

  強(qiáng)調(diào):公理4實(shí)質(zhì)上是說平行具有傳遞性,在平面、空間這個性質(zhì)都適用。

  公理4作用:判斷空間兩條直線平行的依據(jù)。

  3等角定理:空間中如果兩個角的兩邊分別對應(yīng)平行,那么這兩個角相等或互補(bǔ)

  4注意點(diǎn):

  ①a'與b'所成的角的大小只由a、b的相互位置來確定,與O的選擇無關(guān),為了簡便,點(diǎn)O一般取在兩直線中的一條上;

  ②兩條異面直線所成的角θ∈(0,);

  ③當(dāng)兩條異面直線所成的角是直角時(shí),我們就說這兩條異面直線互相垂直,記作a⊥b;

  ④兩條直線互相垂直,有共面垂直與異面垂直兩種情形;

  ⑤計(jì)算中,通常把兩條異面直線所成的角轉(zhuǎn)化為兩條相交直線所成的角。

  2.1.3—2.1.4空間中直線與平面、平面與平面之間的位置關(guān)系

  1、直線與平面有三種位置關(guān)系:

  (1)直線在平面內(nèi)——有無數(shù)個公共點(diǎn)

  (2)直線與平面相交——有且只有一個公共點(diǎn)

  (3)直線在平面平行——沒有公共點(diǎn)

  指出:直線與平面相交或平行的情況統(tǒng)稱為直線在平面外,可用aα來表示

  aαa∩α=Aa∥α

  2.2.直線、平面平行的判定及其性質(zhì)

  2.2.1直線與平面平行的判定

  1、直線與平面平行的判定定理:平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行。

  簡記為:線線平行,則線面平行。

  符號表示:

  aα

  bβ=>a∥α

  a∥b

  2.2.2平面與平面平行的判定

  1、兩個平面平行的判定定理:一個平面內(nèi)的兩條交直線與另一個平面平行,則這兩個平面平行。

  符號表示:

  aβ

  bβ

  a∩b=Pβ∥α

  a∥α

  b∥α

  2、判斷兩平面平行的方法有三種:

  (1)用定義;

  (2)判定定理;

  (3)垂直于同一條直線的兩個平面平行。

  2.2.3—2.2.4直線與平面、平面與平面平行的性質(zhì)

  1、定理:一條直線與一個平面平行,則過這條直線的任一平面與此平面的交線與該直線平行。

  簡記為:線面平行則線線平行。

  符號表示:

  a∥α

  aβa∥b

  α∩β=b

  作用:利用該定理可解決直線間的平行問題。

  2、定理:如果兩個平面同時(shí)與第三個平面相交,那么它們的交線平行。

  符號表示:

  α∥β

  α∩γ=aa∥b

  β∩γ=b

  作用:可以由平面與平面平行得出直線與直線平行

  2.3直線、平面垂直的判定及其性質(zhì)

  2.3.1直線與平面垂直的判定

  1、定義

  如果直線L與平面α內(nèi)的任意一條直線都垂直,我們就說直線L與平面α互相垂直,記作L⊥α,直線L叫做平面α的垂線,平面α叫做直線L的垂面。直線與平面垂直時(shí),它們公共點(diǎn)P叫做垂足。

  2、判定定理:一條直線與一個平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直。

  注意點(diǎn):a)定理中的“兩條相交直線”這一條件不可忽視;

  b)定理體現(xiàn)了“直線與平面垂直”與“直線與直線垂直”互相轉(zhuǎn)化的數(shù)學(xué)思想。

  2.3.2平面與平面垂直的判定

  1、二面角的概念:表示從空間一直線出發(fā)的兩個半平面所組成的圖形

  2、二面角的記法:二面角α-l-β或α-AB-β

  3、兩個平面互相垂直的判定定理:一個平面過另一個平面的垂線,則這兩個平面垂直。

  2.3.3—2.3.4直線與平面、平面與平面垂直的性質(zhì)

  1、定理:垂直于同一個平面的兩條直線平行。

  2性質(zhì)定理:兩個平面垂直,則一個平面內(nèi)垂直于交線的直線與另一個平面垂直。

高二數(shù)學(xué)工作總結(jié) 篇14

  數(shù)列

  1、數(shù)列的定義及數(shù)列的通項(xiàng)公式:

  ① an?f(n),數(shù)列是定義域?yàn)镹

  的函數(shù)f(n),當(dāng)n依次取1,2,???時(shí)的'一列函數(shù)值② i。歸納法

  若S0?0,則an不分段;若S0?0,則an分段iii。若an?1?pan?q,則可設(shè)an?1?m?p(an?m)解得m,得等比數(shù)列?an?m?

  ?Sn?f(an)

  iv。若Sn?f(an),先求a

  1?得到關(guān)于an?1和an的遞推關(guān)系式

  S?f(a)n?1?n?1?Sn?2an?1

  例如:Sn?2an?1先求a1,再構(gòu)造方程組:??(下減上)an?1?2an?1?2an

  ?Sn?1?2an?1?1

  2、等差數(shù)列:

  ①定義:a

  n?1?an=d(常數(shù)),證明數(shù)列是等差數(shù)列的重要工具。 ②通項(xiàng)d?0時(shí),an為關(guān)于n的一次函數(shù);

  d>0時(shí),an為單調(diào)遞增數(shù)列;d<0時(shí),a

  n為單調(diào)遞減數(shù)列。

  n(n?1)2

  ③前n?na1?

  d,

  d?0時(shí),Sn是關(guān)于n的不含常數(shù)項(xiàng)的一元二次函數(shù),反之也成立。

  ④性質(zhì):ii。若?an?為等差數(shù)列,則am,am?k,am?2k,…仍為等差數(shù)列。 iii。若?an?為等差數(shù)列,則Sn,S2n?Sn,S3n?S2n,…仍為等差數(shù)列。 iv若A為a,b的等差中項(xiàng),則有A?3。等比數(shù)列:

  ①定義:

  an?1an

  ?q(常數(shù)),是證明數(shù)列是等比數(shù)列的重要工具。

  a?b2

  ②通項(xiàng)時(shí)為常數(shù)列)。

  ③。前n項(xiàng)和

  需特別注意,公比為字母時(shí)要討論。

高二數(shù)學(xué)工作總結(jié) 篇15

  同角三角函數(shù)基本關(guān)系

  ⒈、同角三角函數(shù)的基本關(guān)系式

  倒數(shù)關(guān)系:

  tanα·cotα=1

  sinα·cscα=1

  cosα·secα=1

  商的關(guān)系:

  sinα/cosα=tanα=secα/cscα

  cosα/sinα=cotα=cscα/secα

  平方關(guān)系:

  sin^2(α)+cos^2(α)=1

  1+tan^2(α)=sec^2(α)

  1+cot^2(α)=csc^2(α)

  同角三角函數(shù)關(guān)系六角形記憶法:

  六角形記憶法:(參看圖片或參考資料鏈接)

  構(gòu)造以"上弦、中切、下割;左正、右余、中間1"的正六邊形為模型。

  (1)倒數(shù)關(guān)系:對角線上兩個函數(shù)互為倒數(shù);

  (2)商數(shù)關(guān)系:六邊形任意一頂點(diǎn)上的函數(shù)值等于與它相鄰的兩個頂點(diǎn)上函數(shù)值的乘積。

  (主要是兩條虛線兩端的三角函數(shù)值的乘積)。由此,可得商數(shù)關(guān)系式。

  (3)平方關(guān)系:在帶有陰影線的三角形中,上面兩個頂點(diǎn)上的三角函數(shù)值的平方和等于下面頂點(diǎn)上的三角函數(shù)值的平方。

  兩角和差公式:

  ⒉兩角和與差的三角函數(shù)公式

  sin(α+β)=sinαcosβ+cosαsinβ

  sin(α-β)=sinαcosβ-cosαsinβ

  cos(α+β)=cosαcosβ-sinαsinβ

  cos(α-β)=cosαcosβ+sinαsinβ

高二數(shù)學(xué)工作總結(jié) 篇16

  1.有向線段的定義

  線段的端點(diǎn)A為始點(diǎn),端點(diǎn)B為終點(diǎn),這時(shí)線段AB具有射線AB的方向.像這樣,具有方向的線段叫做有向線段.記作:.

  2.有向線段的三要素:有向線段包含三個要素:始點(diǎn)、方向和長度.

  3.向量的定義:(1)具有大小和方向的量叫做向量.向量有兩個要素:大小和方向.

  (2)向量的表示方法:①用兩個大寫的英文字母及前頭表示,有向線段來表示向量時(shí),也稱其為向量.書寫時(shí),則用帶箭頭的小寫字母,,,來表示.

  4.向量的長度(模):如果向量=,那么有向線段的長度表示向量的大小,叫做向量的長度(或模),記作||.

  5.相等向量:如果兩個向量和的方向相同且長度相等,則稱和相等,記作:=.

  6.相反向量:與向量等長且方向相反的向量叫做的相反向量,記作:-.

  7.向量平行(共線):如果兩個向量方向相同或相反,則稱這兩個向量平行,向量平行也稱向量共線.向量平行于向量,記作//.規(guī)定: //.

  8.零向量:長度等于零的向量叫做零向量,記作:.零向量的方向是不確定的,是任意的.由于零向量方向的特殊性,解答問題時(shí),一定要看清題目中是零向量還是非零向量.

  9.單位向量:長度等于1的向量叫做單位向量.

  10.向量的加法運(yùn)算:

  (1)向量加法的三角形法則

  11.向量的減法運(yùn)算

  12、兩向量的和差的模與兩向量模的和差之間的關(guān)系

  對于任意兩個向量,,都有|||-|||||+||.

  13.數(shù)乘向量的定義:

  實(shí)數(shù)和向量的乘積是一個向量,這種運(yùn)算叫做數(shù)乘向量,記作.

  向量的長度與方向規(guī)定為:(1)||=|

  (2)當(dāng)0時(shí),與方向相同;當(dāng)0時(shí),與方向相反.

  (3)當(dāng)=0時(shí),當(dāng)=時(shí),=.

  14.數(shù)乘向量的運(yùn)算律:(1))= (結(jié)合律)

  (2)(+) =+(第一分配律)(3)(+)=+.(第二分配律)

  15.平行向量基本定理

  如果向量,則//的充分必要條件是,存在唯一的實(shí)數(shù),使得=.

  如果與不共線,若m=n,則m=n=0.

  16.非零向量的單位向量:非零向量的單位向量是指與同向的單位向量,通常記作.

  =||,即==(,)

  17.線段中點(diǎn)的向量表達(dá)式

  點(diǎn)M是線段AB的中點(diǎn),O是平面內(nèi)任意一點(diǎn),則=(+).

  18.平面向量的直角坐標(biāo)運(yùn)算:如果=(a1,a2),=(b1,b2),則

  +=(a1+b1,a2+b2);-=(a1-b1,a2-b2);=(a1,a2).

  19.利用兩點(diǎn)表示向量:如果A(x1,y1),B(x2,y2),則=(x2-x1,y2-y1).

  20.兩向量相等和平行的條件:若=(a1,a2),=(b1,b2) ,則

  =a1=b1且a2=b2.

  //a1b2-a2b1=0.特別地,如果b10,b20,則// =.

  21.向量的長度公式:若=(a1,a2),則||=.

  22.平面上兩點(diǎn)間的距離公式:若A(x1,y1),B(x2,y2),則||=.

  23.中點(diǎn)公式

  若點(diǎn)A(x1,y1),點(diǎn)B(x2,y2),點(diǎn)M(x,y)是線段AB的中點(diǎn),則x=,y= .

  24.重心公式

  在△ABC中,若A(x1,y1),B(x2,y2),A(x3,y3),,△ABC的重心為G(x,y),則

  x=,y=

  25.(1)兩個向量夾角的取值范圍是[0,p],即0,p.

  當(dāng)=0時(shí),與同向;當(dāng)=p時(shí),與反向

  當(dāng)= 時(shí),與垂直,記作.

  (3)向量的內(nèi)積定義:=||||cos.

  其中,||cos叫做向量在向量方向上的正射影的數(shù)量.規(guī)定=0.

  (4)內(nèi)積的幾何意義

  與的內(nèi)積的幾何意義是的模與在方向上的正射影的數(shù)量,或的模與在 方向上的正射影數(shù)量的乘積

  當(dāng)0,90時(shí),0;=90時(shí),

  90時(shí),0.

  26.向量內(nèi)積的運(yùn)算律:

  (1)交換率

  (2)數(shù)乘結(jié)合律

  (3)分配律

  (4)不滿足組合律

  27.向量內(nèi)積滿足乘法公式

  29.向量內(nèi)積的應(yīng)用:

高二數(shù)學(xué)工作總結(jié) 篇17

  1.函數(shù)的.奇偶性

  (1)若f(x)是偶函數(shù),那么f(x)=f(-x);

  (2)若f(x)是奇函數(shù),0在其定義域內(nèi),則f(0)=0(可用于求參數(shù));

  (3)判斷函數(shù)奇偶性可用定義的等價(jià)形式:f(x)±f(-x)=0或(f(x)≠0);

  (4)若所給函數(shù)的解析式較為復(fù)雜,應(yīng)先化簡,再判斷其奇偶性;

  (5)奇函數(shù)在對稱的單調(diào)區(qū)間內(nèi)有相同的單調(diào)性;偶函數(shù)在對稱的單調(diào)區(qū)間內(nèi)有相反的單調(diào)性;

  2.復(fù)合函數(shù)的有關(guān)問題

  (1)復(fù)合函數(shù)定義域求法:若已知的定義域?yàn)閇a,b],其復(fù)合函數(shù)f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域?yàn)閇a,b],求f(x)的定義域,相當(dāng)于x∈[a,b]時(shí),求g(x)的值域(即f(x)的定義域);研究函數(shù)的問題一定要注意定義域優(yōu)先的原則。

  (2)復(fù)合函數(shù)的單調(diào)性由“同增異減”判定;

  3.函數(shù)圖像(或方程曲線的對稱性)

  (1)證明函數(shù)圖像的對稱性,即證明圖像上任意點(diǎn)關(guān)于對稱中心(對稱軸)的對稱點(diǎn)仍在圖像上;

  (2)證明圖像C1與C2的對稱性,即證明C1上任意點(diǎn)關(guān)于對稱中心(對稱軸)的對稱點(diǎn)仍在C2上,反之亦然;

  (3)曲線C1:f(x,y)=0,關(guān)于y=x+a(y=-x+a)的對稱曲線C2的方程為f(y-a,x+a)=0(或f(-y+a,-x+a)=0);

  (4)曲線C1:f(x,y)=0關(guān)于點(diǎn)(a,b)的對稱曲線C2方程為:f(2a-x,2b-y)=0;

  (5)若函數(shù)y=f(x)對x∈R時(shí),f(a+x)=f(a-x)恒成立,則y=f(x)圖像關(guān)于直線x=a對稱;

  (6)函數(shù)y=f(x-a)與y=f(b-x)的圖像關(guān)于直線x=對稱;

  4.函數(shù)的周期性

  (1)y=f(x)對x∈R時(shí),f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恒成立,則y=f(x)是周期為2a的周期函數(shù);

  (2)若y=f(x)是偶函數(shù),其圖像又關(guān)于直線x=a對稱,則f(x)是周期為2︱a︱的周期函數(shù);

  (3)若y=f(x)奇函數(shù),其圖像又關(guān)于直線x=a對稱,則f(x)是周期為4︱a︱的周期函數(shù);

  (4)若y=f(x)關(guān)于點(diǎn)(a,0),(b,0)對稱,則f(x)是周期為2的周期函數(shù);

  (5)y=f(x)的圖象關(guān)于直線x=a,x=b(a≠b)對稱,則函數(shù)y=f(x)是周期為2的周期函數(shù);

  (6)y=f(x)對x∈R時(shí),f(x+a)=-f(x)(或f(x+a)=,則y=f(x)是周期為2的周期函數(shù);

  5.方程k=f(x)有解k∈D(D為f(x)的值域);

高二數(shù)學(xué)工作總結(jié) 篇18

  簡單隨機(jī)抽樣

  1.總體和樣本

  在統(tǒng)計(jì)學(xué)中,把研究對象的全體叫做總體.

  把每個研究對象叫做個體.

  把總體中個體的總數(shù)叫做總體容量.

  為了研究總體的有關(guān)性質(zhì),一般從總體中隨機(jī)抽取一部分:

  研究,我們稱它為樣本.其中個體的個數(shù)稱為樣本容量.

  2.簡單隨機(jī)抽樣,也叫純隨機(jī)抽樣。就是從總體中不加任何分組、劃類、排隊(duì)等,完全隨

  機(jī)地抽取調(diào)查單位。特點(diǎn)是:每個樣本單位被抽中的可能性相同(概率相等),樣本的每個單位完全獨(dú)立,彼此間無一定的關(guān)聯(lián)性和排斥性。簡單隨機(jī)抽樣是其它各種抽樣形式的基礎(chǔ)。通常只是在總體單位之間差異程度較小和數(shù)目較少時(shí),才采用這種方法。

  3.簡單隨機(jī)抽樣常用的方法:

  抽簽法;隨機(jī)數(shù)表法;計(jì)算機(jī)模擬法;使用統(tǒng)計(jì)軟件直接抽取。

  在簡單隨機(jī)抽樣的.樣本容量設(shè)計(jì)中,主要考慮:①總體變異情況;②允許誤差范圍;③概率保證程度。

  4.抽簽法:

  (1)給調(diào)查對象群體中的每一個對象編號;

  (2)準(zhǔn)備抽簽的工具,實(shí)施抽簽

  (3)對樣本中的每一個個體進(jìn)行測量或調(diào)查

  例:請調(diào)查你所在的學(xué)校的學(xué)生做喜歡的體育活動情況。

  5.隨機(jī)數(shù)表法:

  例:利用隨機(jī)數(shù)表在所在的班級中抽取10位同學(xué)參加某項(xiàng)活動。

  系統(tǒng)抽樣

  1.系統(tǒng)抽樣(等距抽樣或機(jī)械抽樣):

  把總體的單位進(jìn)行排序,再計(jì)算出抽樣距離,然后按照這一固定的抽樣距離抽取樣本。第一個樣本采用簡單隨機(jī)抽樣的辦法抽取。

  K(抽樣距離)=N(總體規(guī)模)/n(樣本規(guī)模)

  前提條件:總體中個體的排列對于研究的變量來說,應(yīng)是隨機(jī)的,即不存在某種與研究變量相關(guān)的規(guī)則分布。可以在調(diào)查允許的條件下,從不同的樣本開始抽樣,對比幾次樣本的特點(diǎn)。如果有明顯差別,說明樣本在總體中的分布承某種循環(huán)性規(guī)律,且這種循環(huán)和抽樣距離重合。

  2.系統(tǒng)抽樣,即等距抽樣是實(shí)際中最為常用的抽樣方法之一。因?yàn)樗鼘Τ闃涌虻囊筝^低,實(shí)施也比較簡單。更為重要的是,如果有某種與調(diào)查指標(biāo)相關(guān)的輔助變量可供使用,總體單元按輔助變量的大小順序排隊(duì)的話,使用系統(tǒng)抽樣可以大大提高估計(jì)精度。

  分層抽樣

  1.分層抽樣(類型抽樣):

  先將總體中的所有單位按照某種特征或標(biāo)志(性別、年齡等)劃分成若干類型或?qū)哟危缓笤僭诟鱾類型或?qū)哟沃胁捎煤唵坞S機(jī)抽樣或系用抽樣的辦法抽取一個子樣本,最后,將這些子樣本合起來構(gòu)成總體的樣本。

  兩種方法:

  1.先以分層變量將總體劃分為若干層,再按照各層在總體中的比例從各層中抽取。

  2.先以分層變量將總體劃分為若干層,再將各層中的元素按分層的順序整齊排列,最后用系統(tǒng)抽樣的方法抽取樣本。

  2.分層抽樣是把異質(zhì)性較強(qiáng)的總體分成一個個同質(zhì)性較強(qiáng)的子總體,再抽取不同的子總體中的樣本分別代表該子總體,所有的樣本進(jìn)而代表總體。

  分層標(biāo)準(zhǔn):

  (1)以調(diào)查所要分析和研究的主要變量或相關(guān)的變量作為分層的標(biāo)準(zhǔn)。

  (2)以保證各層內(nèi)部同質(zhì)性強(qiáng)、各層之間異質(zhì)性強(qiáng)、突出總體內(nèi)在結(jié)構(gòu)的變量作為分層變量。

  (3)以那些有明顯分層區(qū)分的變量作為分層變量。

  3.分層的比例問題:

  (1)按比例分層抽樣:根據(jù)各種類型或?qū)哟沃械膯挝粩?shù)目占總體單位數(shù)目的比重來抽取子樣本的方法。

  (2)不按比例分層抽樣:有的層次在總體中的比重太小,其樣本量就會非常少,此時(shí)采用該方法,主要是便于對不同層次的子總體進(jìn)行專門研究或進(jìn)行相互比較。如果要用樣本資料推斷總體時(shí),則需要先對各層的數(shù)據(jù)資料進(jìn)行加權(quán)處理,調(diào)整樣本中各層的比例,使數(shù)據(jù)恢復(fù)到總體中各層實(shí)際的比例結(jié)構(gòu)。

  用樣本的數(shù)字特征估計(jì)總體的數(shù)字特征

  1、本均值:

  2、樣本標(biāo)準(zhǔn)差:

  3.用樣本估計(jì)總體時(shí),如果抽樣的方法比較合理,那么樣本可以反映總體的信息,但從樣本得到的信息會有偏差。在隨機(jī)抽樣中,這種偏差是不可避免的。

  雖然我們用樣本數(shù)據(jù)得到的分布、均值和標(biāo)準(zhǔn)差并不是總體的真正的分布、均值和標(biāo)準(zhǔn)差,而只是一個估計(jì),但這種估計(jì)是合理的,特別是當(dāng)樣本量很大時(shí),它們確實(shí)反映了總體的信息。

  4.(1)如果把一組數(shù)據(jù)中的每一個數(shù)據(jù)都加上或減去同一個共同的常數(shù),標(biāo)準(zhǔn)差不變

  (2)如果把一組數(shù)據(jù)中的每一個數(shù)據(jù)乘以一個共同的常數(shù)k,標(biāo)準(zhǔn)差變?yōu)樵瓉淼膋倍

  (3)一組數(shù)據(jù)中的值和最小值對標(biāo)準(zhǔn)差的影響,區(qū)間的應(yīng)用;

  “去掉一個分,去掉一個最低分”中的科學(xué)道理

  兩個變量的線性相關(guān)

  1、概念:

  (1)回歸直線方程(2)回歸系數(shù)

  2.最小二乘法

  3.直線回歸方程的應(yīng)用

  (1)描述兩變量之間的依存關(guān)系;利用直線回歸方程即可定量描述兩個變量間依存的數(shù)量關(guān)系

  (2)利用回歸方程進(jìn)行預(yù)測;把預(yù)報(bào)因子(即自變量x)代入回歸方程對預(yù)報(bào)量(即因變量Y)進(jìn)行估計(jì),即可得到個體Y值的容許區(qū)間。

  (3)利用回歸方程進(jìn)行統(tǒng)計(jì)控制規(guī)定Y值的變化,通過控制x的范圍來實(shí)現(xiàn)統(tǒng)計(jì)控制的目標(biāo)。如已經(jīng)得到了空氣中NO2的濃度和汽車流量間的回歸方程,即可通過控制汽車流量來控制空氣中NO2的濃度。

  4.應(yīng)用直線回歸的注意事項(xiàng)

  (1)做回歸分析要有實(shí)際意義;

  (2)回歸分析前,先作出散點(diǎn)圖;

  (3)回歸直線不要外延。

高二數(shù)學(xué)工作總結(jié) 篇19

  空間中的垂直問題

  (1)線線、面面、線面垂直的定義

  ①兩條異面直線的垂直:如果兩條異面直線所成的角是直角,就說這兩條異面直線互相垂直。

  ②線面垂直:如果一條直線和一個平面內(nèi)的任何一條直線垂直,就說這條直線和這個平面垂直。

  ③平面和平面垂直:如果兩個平面相交,所成的二面角(從一條直線出發(fā)的兩個半平面所組成的圖形)是直二面角(平面角是直角),就說這兩個平面垂直。

  (2)垂直關(guān)系的判定和性質(zhì)定理

  ①線面垂直判定定理和性質(zhì)定理

  判定定理:如果一條直線和一個平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直這個平面。

  性質(zhì)定理:如果兩條直線同垂直于一個平面,那么這兩條直線平行。

  ②面面垂直的判定定理和性質(zhì)定理

  判定定理:如果一個平面經(jīng)過另一個平面的一條垂線,那么這兩個平面互相垂直。

  性質(zhì)定理:如果兩個平面互相垂直,那么在一個平面內(nèi)垂直于他們的交線的直線垂直于另一個平面。

高二數(shù)學(xué)工作總結(jié) 篇20

  一、集合、簡易邏輯(14課時(shí),8個)1.集合;2.子集;3.補(bǔ)集;4.交集;5.并集;6.邏輯連結(jié)詞;7.四種命題;8.充要條件.

  二、函數(shù)(30課時(shí),12個)1.映射;2.函數(shù);3.函數(shù)的單調(diào)性;4.反函數(shù);5.互為反函數(shù)的函數(shù)圖象間的關(guān)系;6.指數(shù)概念的擴(kuò)充;7.有理指數(shù)冪的運(yùn)算;8.指數(shù)函數(shù);9.對數(shù);10.對數(shù)的運(yùn)算性質(zhì);11.對數(shù)函數(shù).12.函數(shù)的應(yīng)用舉例.

  三、數(shù)列(12課時(shí),5個)1.數(shù)列;2.等差數(shù)列及其通項(xiàng)公式;3.等差數(shù)列前n項(xiàng)和公式;4.等比數(shù)列及其通頂公式;5.等比數(shù)列前n項(xiàng)和公式.

  四、三角函數(shù)(46課時(shí)17個)1.角的概念的推廣;2.弧度制;3.任意角的三角函數(shù);4,單位圓中的三角函數(shù)線;5.同角三角函數(shù)的基本關(guān)系式;6.正弦、余弦的誘導(dǎo)公式’7.兩角和與差的正弦、余弦、正切;8.二倍角的正弦、余弦、正切;9.正弦函數(shù)、余弦函數(shù)的圖象和性質(zhì);10.周期函數(shù);11.函數(shù)的奇偶性;12.函數(shù)的圖象;13.正切函數(shù)的圖象和性質(zhì);14.已知三角函數(shù)值求角;15.正弦定理;16余弦定理;17斜三角形解法舉例.

  五、平面向量(12課時(shí),8個)1.向量2.向量的加法與減法3.實(shí)數(shù)與向量的積;4.平面向量的坐標(biāo)表示;5.線段的定比分點(diǎn);6.平面向量的數(shù)量積;7.平面兩點(diǎn)間的距離;8.平移.

  六、不等式(22課時(shí),5個)1.不等式;2.不等式的基本性質(zhì);3.不等式的證明;4.不等式的解法;5.含絕對值的不等式.

  七、直線和圓的方程(22課時(shí),12個)1.直線的傾斜角和斜率;2.直線方程的點(diǎn)斜式和兩點(diǎn)式;3.直線方程的一般式;4.兩條直線平行與垂直的條件;5.兩條直線的交角;6.點(diǎn)到直線的距離;7.用二元一次不等式表示平面區(qū)域;8.簡單線性規(guī)劃問題.9.曲線與方程的概念;10.由已知條件列出曲線方程;11.圓的標(biāo)準(zhǔn)方程和一般方程;12.圓的參數(shù)方程.

  八、圓錐曲線(18課時(shí),7個)1橢圓及其標(biāo)準(zhǔn)方程;2.橢圓的簡單幾何性質(zhì);3.橢圓的參數(shù)方程;4.雙曲線及其標(biāo)準(zhǔn)方程;5.雙曲線的簡單幾何性質(zhì);6.拋物線及其標(biāo)準(zhǔn)方程;7.拋物線的簡單幾何性質(zhì).九、(B)直線、平面、簡單何體(36課時(shí),28個)1.平面及基本性質(zhì);2.平面圖形直觀圖的畫法;3.平面直線;4.直線和平面平行的判定與性質(zhì);5,直線和平面垂直的判與性質(zhì);6.三垂線定理及其逆定理;7.兩個平面的位置關(guān)系;8.空間向量及其加法、減法與數(shù)乘;9.空間向量的坐標(biāo)表示;10.空間向量的數(shù)量積;11.直線的方向向量;12.異面直線所成的角;13.異面直線的公垂線;14異面直線的距離;15.直線和平面垂直的性質(zhì);16.平面的法向量;17.點(diǎn)到平面的距離;18.直線和平面所成的角;19.向量在平面內(nèi)的射影;20.平面與平面平行的性質(zhì);21.平行平面間的距離;22.二面角及其平面角;23.兩個平面垂直的判定和性質(zhì);24.多面體;25.棱柱;26.棱錐;27.正多面體;28.球.

  十、排列、組合、二項(xiàng)式定理(18課時(shí),8個)1.分類計(jì)數(shù)原理與分步計(jì)數(shù)原理.2.排列;3.排列數(shù)公式’4.組合;5.組合數(shù)公式;6.組合數(shù)的兩個性質(zhì);7.二項(xiàng)式定理;8.二項(xiàng)展開式的性質(zhì).

  十一、概率(12課時(shí),5個)1.隨機(jī)事件的概率;2.等可能事件的概率;3.互斥事件有一個發(fā)生的概率;4.相互獨(dú)立事件同時(shí)發(fā)生的概率;5.獨(dú)立重復(fù)試驗(yàn).選修Ⅱ(24個)

  十二、概率與統(tǒng)計(jì)(14課時(shí),6個)1.離散型隨機(jī)變量的分布列;2.離散型隨機(jī)變量的期望值和方差;3.抽樣方法;4.總體分布的估計(jì);5.正態(tài)分布;6.線性回歸.

  十三、極限(12課時(shí),6個)1.數(shù)學(xué)歸納法;2.數(shù)學(xué)歸納法應(yīng)用舉例;3.數(shù)列的極限;4.函數(shù)的極限;5.極限的四則運(yùn)算;6.函數(shù)的連續(xù)性.

  十四、導(dǎo)數(shù)(18課時(shí),8個)1.導(dǎo)數(shù)的概念;2.導(dǎo)數(shù)的幾何意義;3.幾種常見函數(shù)的導(dǎo)數(shù);4.兩個函數(shù)的和、差、積、商的導(dǎo)數(shù);5.復(fù)合函數(shù)的導(dǎo)數(shù);6.基本導(dǎo)數(shù)公式;7.利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和極值;8函數(shù)的最大值和最小值.

  十五、復(fù)數(shù)(4課時(shí),4個)1.復(fù)數(shù)的概念;2.復(fù)數(shù)的加法和減法;3.復(fù)數(shù)的乘法和除法答案補(bǔ)充高中數(shù)學(xué)有130個知識點(diǎn),從前一份試卷要考查90個知識點(diǎn),覆蓋率達(dá)70%左右,而且把這一項(xiàng)作為衡量試卷成功與否的標(biāo)準(zhǔn)之一.這一傳統(tǒng)近年被打破,取而代之的是關(guān)注思維,突出能力,重視思想方法和思維能力的考查.現(xiàn)在的我們學(xué)數(shù)學(xué)比前人幸福啊!!相信對你的學(xué)習(xí)會有幫助的,祝你成功!答案補(bǔ)充一試全國高中數(shù)學(xué)聯(lián)賽的一試競賽大綱,完全按照全日制中學(xué)《數(shù)學(xué)教學(xué)大綱》中所規(guī)定的教學(xué)要求和內(nèi)容,即高考所規(guī)定的知識范圍和方法,在方法的要求上略有提高,其中概率和微積分初步不考。二試1、平面幾何基本要求:掌握初中數(shù)學(xué)競賽大綱所確定的所有內(nèi)容。補(bǔ)充要求:面積和面積方法。幾個重要定理:梅涅勞斯定理、塞瓦定理、托勒密定理、西姆松定理。幾個重要的極值:到三角形三頂點(diǎn)距離之和最小的點(diǎn)--費(fèi)馬點(diǎn)。到三角形三頂點(diǎn)距離的平方和最小的點(diǎn),重心。三角形內(nèi)到三邊距離之積最大的點(diǎn),重心。幾何不等式。簡單的等周問題。了解下述定理:在周長一定的n邊形的集合中,正n邊形的面積最大。在周長一定的簡單閉曲線的集合中,圓的面積最大。在面積一定的n邊形的集合中,正n邊形的周長最小。在面積一定的簡單閉曲線的集合中,圓的周長最小。幾何中的運(yùn)動:反射、平移、旋轉(zhuǎn)。復(fù)數(shù)方法、向量方法。平面凸集、凸包及應(yīng)用。答案補(bǔ)充第二數(shù)學(xué)歸納法。遞歸,一階、二階遞歸,特征方程法。函數(shù)迭代,求n次迭代,簡單的函數(shù)方程。n個變元的平均不等式,柯西不等式,排序不等式及應(yīng)用。復(fù)數(shù)的指數(shù)形式,歐拉公式,棣莫佛定理,單位根,單位根的應(yīng)用。圓排列,有重復(fù)的排列與組合,簡單的組合恒等式。一元n次方程(多項(xiàng)式)根的個數(shù),根與系數(shù)的關(guān)系,實(shí)系數(shù)方程虛根成對定理。簡單的初等數(shù)論問題,除初中大綱中所包括的內(nèi)容外,還應(yīng)包括無窮遞降法,同余,歐幾里得除法,非負(fù)最小完全剩余類,高斯函數(shù),費(fèi)馬小定理,歐拉函數(shù),孫子定理,格點(diǎn)及其性質(zhì)。3、立體幾何多面角,多面角的性質(zhì)。三面角、直三面角的基本性質(zhì)。正多面體,歐拉定理。體積證法。截面,會作截面、表面展開圖。4、平面解析幾何直線的法線式,直線的極坐標(biāo)方程,直線束及其應(yīng)用。二元一次不等式表示的區(qū)域。三角形的面積公式。圓錐曲線的切線和法線。圓的冪和根軸。

高二數(shù)學(xué)工作總結(jié) 篇21

  數(shù)列定義:

  如果一個數(shù)列從第二項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差等于同一個常數(shù),這個數(shù)列就叫做等差數(shù)列,這個常數(shù)叫做等差數(shù)列的公差,公差常用字母d表示。

  前n項(xiàng)和公式為:Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2(2)

  以上n均屬于正整數(shù)。

  解釋說明:

  從(1)式可以看出,an是n的一次函數(shù)(d≠0)或常數(shù)函數(shù)(d=0),(n,an)排在一條直線上,由(2)式知,Sn是n的二次函數(shù)(d≠0)或一次函數(shù)(d=0,a1≠0),且常數(shù)項(xiàng)為0。

  在等差數(shù)列中,等差中項(xiàng):一般設(shè)為Ar,Am+An=2Ar,所以Ar為Am,An的等差中項(xiàng),且為數(shù)列的平均數(shù)。

  且任意兩項(xiàng)am,an的關(guān)系為:an=am+(n-m)d

  它可以看作等差數(shù)列廣義的通項(xiàng)公式。

  推論公式:

  從等差數(shù)列的定義、通項(xiàng)公式,前n項(xiàng)和公式還可推出:a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n}

  若m,n,p,q∈N_且m+n=p+q,則有am+an=ap+aq,Sm-1=(2n-1)an,S2n+1=(2n+1)an+1,Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差數(shù)列,等等。

  基本公式:

  和=(首項(xiàng)+末項(xiàng))×項(xiàng)數(shù)÷2

  項(xiàng)數(shù)=(末項(xiàng)-首項(xiàng))÷公差+1

  首項(xiàng)=2和÷項(xiàng)數(shù)-末項(xiàng)

  末項(xiàng)=2和÷項(xiàng)數(shù)-首項(xiàng)

  末項(xiàng)=首項(xiàng)+(項(xiàng)數(shù)-1)×公差

高二數(shù)學(xué)工作總結(jié) 篇22

  等差數(shù)列

  對于一個數(shù)列{a n },如果任意相鄰兩項(xiàng)之差為一個常數(shù),那么該數(shù)列為等差數(shù)列,且稱這一定值差為公差,記為 d ;從第一項(xiàng) a 1 到第n項(xiàng) a n 的總和,記為 S n 。

  那么 , 通項(xiàng)公式為,其求法很重要,利用了“疊加原理”的思想:

  將以上 n-1 個式子相加, 便會接連消去很多相關(guān)的項(xiàng) ,最終等式左邊余下a n ,而右邊則余下 a1和 n-1 個d,如此便得到上述通項(xiàng)公式。

  此外, 數(shù)列前 n 項(xiàng)的和,其具體推導(dǎo)方式較簡單,可用以上類似的疊加的方法,也可以采取迭代的方法,在此,不再復(fù)述。

  值得說明的是,也即,前n項(xiàng)的和Sn 除以 n 后,便得到一個以a 1 為首項(xiàng),以 d /2 為公差的新數(shù)列,利用這一特點(diǎn)可以使很多涉及Sn 的數(shù)列問題迎刃而解。

  等比數(shù)列

  對于一個數(shù)列 {a n },如果任意相鄰兩項(xiàng)之商(即二者的比)為一個常數(shù),那么該數(shù)列為等比數(shù)列,且稱這一定值商為公比 q ;從第一項(xiàng) a 1 到第n項(xiàng) a n 的總和,記為 T n 。

  那么, 通項(xiàng)公式為(即a1 乘以q 的 (n-1)次方,其推導(dǎo)為“連乘原理”的思想:

  a 2 = a 1 *q,

  a 3 = a 2 *q,

  a 4 = a 3 *q,

  ````````

  a n = a n-1 *q,

  將以上(n-1)項(xiàng)相乘,左右消去相應(yīng)項(xiàng)后,左邊余下a n , 右邊余下 a1 和(n-1)個q的乘積,也即得到了所述通項(xiàng)公式。

  此外, 當(dāng)q=1時(shí) 該數(shù)列的前n項(xiàng)和 Tn=a1*n

  當(dāng)q≠1時(shí) 該數(shù)列前n 項(xiàng)的和 T n = a1 * ( 1- q^(n)) / (1-q).

高二數(shù)學(xué)工作總結(jié) 篇23

  1、圓的定義

  平面內(nèi)到一定點(diǎn)的距離等于定長的點(diǎn)的集合叫圓,定點(diǎn)為圓心,定長為圓的半徑。

  2、圓的方程

  (x-a)^2+(y-b)^2=r^2

  (1)標(biāo)準(zhǔn)方程,圓心(a,b),半徑為r;

  (2)求圓方程的方法:

  一般都采用待定系數(shù)法:先設(shè)后求。確定一個圓需要三個獨(dú)立條件,若利用圓的標(biāo)準(zhǔn)方程,

  需求出a,b,r;若利用一般方程,需要求出D,E,F(xiàn);

  另外要注意多利用圓的幾何性質(zhì):如弦的中垂線必經(jīng)過原點(diǎn),以此來確定圓心的位置。

  3、直線與圓的位置關(guān)系

  直線與圓的位置關(guān)系有相離,相切,相交三種情況:

  (1)設(shè)直線,圓,圓心到l的距離為,則有;;

  (2)過圓外一點(diǎn)的切線:①k不存在,驗(yàn)證是否成立②k存在,設(shè)點(diǎn)斜式方程,用圓心到該直線距離=半徑,求解k,得到方程【一定兩解】

  (3)過圓上一點(diǎn)的切線方程:圓(x-a)2+(y-b)2=r2,圓上一點(diǎn)為(x0,y0),則過此點(diǎn)的切線方程為(x0-a)(x-a)+(y0-b)(y-b)=r2

  練習(xí)題:

  2.若圓(x-a)2+(y-b)2=r2過原點(diǎn),則

  A.a2-b2=0B.a2+b2=r2

  C.a2+b2+r2=0D.a=0,b=0

  【解析】選B.因?yàn)閳A過原點(diǎn),所以(0,0)滿足方程,

  即(0-a)2+(0-b)2=r2,

  所以a2+b2=r2.

高二數(shù)學(xué)工作總結(jié) 篇24

  考點(diǎn)一:向量的概念、向量的基本定理

  【內(nèi)容解讀】了解向量的實(shí)際背景,掌握向量、零向量、平行向量、共線向量、單位向量、相等向量等概念,理解向量的幾何表示,掌握平面向量的基本定理。

  注意對向量概念的理解,向量是可以自由移動的,平移后所得向量與原向量相同;兩個向量無法比較大小,它們的模可比較大小。

  考點(diǎn)二:向量的運(yùn)算

  【內(nèi)容解讀】向量的運(yùn)算要求掌握向量的加減法運(yùn)算,會用平行四邊形法則、三角形法則進(jìn)行向量的加減運(yùn)算;掌握實(shí)數(shù)與向量的積運(yùn)算,理解兩個向量共線的含義,會判斷兩個向量的平行關(guān)系;掌握向量的數(shù)量積的運(yùn)算,體會平面向量的數(shù)量積與向量投影的關(guān)系,并理解其幾何意義,掌握數(shù)量積的坐標(biāo)表達(dá)式,會進(jìn)行平面向量積的運(yùn)算,能運(yùn)用數(shù)量積表示兩個向量的夾角,會用向量積判斷兩個平面向量的垂直關(guān)系。

  【命題規(guī)律】命題形式主要以選擇、填空題型出現(xiàn),難度不大,考查重點(diǎn)為模和向量夾角的定義、夾角公式、向量的坐標(biāo)運(yùn)算,有時(shí)也會與其它內(nèi)容相結(jié)合。

  考點(diǎn)三:定比分點(diǎn)

  【內(nèi)容解讀】掌握線段的定比分點(diǎn)和中點(diǎn)坐標(biāo)公式,并能熟練應(yīng)用,求點(diǎn)分有向線段所成比時(shí),可借助圖形來幫助理解。

  【命題規(guī)律】重點(diǎn)考查定義和公式,主要以選擇題或填空題型出現(xiàn),難度一般。由于向量應(yīng)用的廣泛性,經(jīng)常也會與三角函數(shù),解析幾何一并考查,若出現(xiàn)在解答題中,難度以中檔題為主,偶爾也以難度略高的題目。

  考點(diǎn)四:向量與三角函數(shù)的綜合問題

  【內(nèi)容解讀】向量與三角函數(shù)的綜合問題是高考經(jīng)常出現(xiàn)的問題,考查了向量的知識,三角函數(shù)的知識,達(dá)到了高考中試題的覆蓋面的要求。

  【命題規(guī)律】命題以三角函數(shù)作為坐標(biāo),以向量的坐標(biāo)運(yùn)算或向量與解三角形的內(nèi)容相結(jié)合,也有向量與三角函數(shù)圖象平移結(jié)合的問題,屬中檔偏易題。

  考點(diǎn)五:平面向量與函數(shù)問題的交匯

  【內(nèi)容解讀】平面向量與函數(shù)交匯的問題,主要是向量與二次函數(shù)結(jié)合的問題為主,要注意自變量的取值范圍。

  【命題規(guī)律】命題多以解答題為主,屬中檔題。

  考點(diǎn)六:平面向量在平面幾何中的應(yīng)用

  【內(nèi)容解讀】向量的坐標(biāo)表示實(shí)際上就是向量的代數(shù)表示.在引入向量的坐標(biāo)表示后,使向量之間的運(yùn)算代數(shù)化,這樣就可以將“形”和“數(shù)”緊密地結(jié)合在一起.因此,許多平面幾何問題中較難解決的問題,都可以轉(zhuǎn)化為大家熟悉的代數(shù)運(yùn)算的論證.也就是把平面幾何圖形放到適當(dāng)?shù)淖鴺?biāo)系中,賦予幾何圖形有關(guān)點(diǎn)與平面向量具體的坐標(biāo),這樣將有關(guān)平面幾何問題轉(zhuǎn)化為相應(yīng)的代數(shù)運(yùn)算和向量運(yùn)算,從而使問題得到解決.

  【命題規(guī)律】命題多以解答題為主,屬中等偏難的試題。

高二數(shù)學(xué)工作總結(jié) 篇25

  基本概念

  公理1:如果一條直線上的兩點(diǎn)在一個平面內(nèi),那么這條直線上的所有的點(diǎn)都在這個平面內(nèi)。

  公理2:如果兩個平面有一個公共點(diǎn),那么它們有且只有一條通過這個點(diǎn)的公共直線。

  公理3:過不在同一條直線上的三個點(diǎn),有且只有一個平面。

  推論1:經(jīng)過一條直線和這條直線外一點(diǎn),有且只有一個平面。

  推論2:經(jīng)過兩條相交直線,有且只有一個平面。

  推論3:經(jīng)過兩條平行直線,有且只有一個平面。

  公理4:平行于同一條直線的兩條直線互相平行。

  等角定理:如果一個角的兩邊和另一個角的兩邊分別平行并且方向相同,那么這兩個角相等。

高二數(shù)學(xué)工作總結(jié) 篇26

  一、學(xué)習(xí)目標(biāo):

  知識與技能:理解直線與平面、平面與平面平行的性質(zhì)定理的含義,并會應(yīng)用性質(zhì)解決問題。

  過程與方法:能應(yīng)用文字語言、符號語言、圖形語言準(zhǔn)確地描述直線與平面、平面與平面的性質(zhì)定理。

  情感態(tài)度與價(jià)值觀:通過自主學(xué)習(xí)、主動參與、積極探究的學(xué)習(xí)過程,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的自信心和積極性,培養(yǎng)學(xué)生良好的思維習(xí)慣,滲透化歸與轉(zhuǎn)化的數(shù)學(xué)思想,體會事物之間相互轉(zhuǎn)化和理論聯(lián)系實(shí)際的辯證唯物主義思想方法。

  二、學(xué)習(xí)重、難點(diǎn)

  學(xué)習(xí)重點(diǎn):直線與平面、平面與平面平行的性質(zhì)及其應(yīng)用。

  學(xué)習(xí)難點(diǎn):將空間問題轉(zhuǎn)化為平面問題的方法。

  三、學(xué)法指導(dǎo)及要求:

  1、限定45分鐘完成,注意逐字逐句仔細(xì)審題,認(rèn)真思考、獨(dú)立規(guī)范作答,不會的先繞過,做好記號。

  2、把學(xué)案中自己易忘、易出錯的知識點(diǎn)和疑難問題以及解題方法規(guī)律,及時(shí)整理在解題本,多復(fù)習(xí)記憶。

  3、A:自主學(xué)習(xí);B:合作探究;C:能力提升4、小班、重點(diǎn)班完成全部,平行班完成A.B類題。

  四、知識鏈接:

  1.空間直線與直線的位置關(guān)系。

  2.直線與平面的位置關(guān)系。

  3.平面與平面的位置關(guān)系。

  4.直線與平面平行的判定定理的符號表示。

  5.平面與平面平行的判定定理的符號表示。

  五、學(xué)習(xí)過程:

  A問題1:

  1)如果一條直線與一個平面平行,那么這條直線與這個平面內(nèi)的直線有哪些位置關(guān)系?

  (觀察長方體)

  2)如果一條直線和一個平面平行,如何在這個平面內(nèi)做一條直線與已知直線平行?

  (可觀察教室內(nèi)燈管和地面)

  A問題2:一條直線與平面平行,這條直線和這個平面內(nèi)直線的位置關(guān)系有幾種可能?

  A問題3:如果一條直線與平面α平行,在什么條件下直線與平面α內(nèi)的直線平行呢?

  由于直線與平面α內(nèi)的任何直線無公共點(diǎn),所以過直線的某一平面,若與平面α相交,則直線就平行于這條交線。

  B自主探究1:已知:∥α,β,α∩β=b。求證:∥b。

  直線與平面平行的性質(zhì)定理:一條直線與一個平面平行,則過這條直線的任一平面與此平面的交線與該直線平行。

  符號語言:

  線面平行性質(zhì)定理作用:證明兩直線平行。

高二數(shù)學(xué)工作總結(jié) 篇27

  【不等關(guān)系及不等式】

  一、不等關(guān)系及不等式知識點(diǎn)

  1.不等式的定義

  在客觀世界中,量與量之間的不等關(guān)系是普遍存在的,我們用數(shù)學(xué)符號、連接兩個數(shù)或代數(shù)式以表示它們之間的不等關(guān)系,含有這些不等號的式子,叫做不等式.

  2.比較兩個實(shí)數(shù)的大小

  兩個實(shí)數(shù)的大小是用實(shí)數(shù)的運(yùn)算性質(zhì)來定義的,有a-baa-b=0a-ba0,則有a/baa/b=1a/ba

  3.不等式的性質(zhì)

  (1)對稱性:ab

  (2)傳遞性:ab,ba

  (3)可加性:aa+cb+c,ab,ca+c

  (4)可乘性:ab,cacb0,c0bd;

  (5)可乘方:a0bn(nN,n

  (6)可開方:a0

  (nN,n2).

  注意:

  一個技巧

  作差法變形的技巧:作差法中變形是關(guān)鍵,常進(jìn)行因式分解或配方.

  一種方法

  待定系數(shù)法:求代數(shù)式的范圍時(shí),先用已知的代數(shù)式表示目標(biāo)式,再利用多項(xiàng)式相等的法則求出參數(shù),最后利用不等式的性質(zhì)求出目標(biāo)式的范圍.

高二數(shù)學(xué)工作總結(jié) 篇28

  圓柱、圓錐、圓臺和球的表面積

  (1)圓柱、圓錐、圓臺和多面體一樣都是可以平面展開的。

  ①圓柱、圓錐、圓臺的側(cè)面展開圖,是求其側(cè)面積的基本依據(jù)。

  圓柱的側(cè)面展開圖,是由底面圖的周長和母線長組成的一個矩形。

  ②圓錐和側(cè)面展開圖是一個由兩條母線長和底面圓的周長組成的扇形,其扇形的圓心角為

  ③圓臺的側(cè)面展開圖是一個由兩條母線長和上、下底面周長組成的扇環(huán),其扇環(huán)的圓心角為

  這個公式有利于空間幾何體和其側(cè)面展開圖的互化

  顯然,當(dāng)r=0時(shí),這個公式就是圓錐側(cè)面展開圖扇形的圓心角公式,所以,圓錐側(cè)面展開圖扇形的圓心角公式是圓臺相關(guān)角的特例。

  (2)圓柱、圓錐和圓臺的側(cè)面公式為

  S側(cè)=π(r+R)l

  當(dāng)r=R時(shí),S側(cè)=2πRl,即圓柱的側(cè)面積公式。

  當(dāng)r=0時(shí),S側(cè)=rRl,即圓錐的面積公式。

  要重視,側(cè)面積間的這種關(guān)系。

  (3)球面是不能平面展開的圖形,所以,求它的面積的方法與柱、錐、臺的方法完全不同。

  推導(dǎo)出來,要用“微積分”等高等數(shù)學(xué)的知識,課本上不能算是一種證明。

  求不規(guī)則圓形的度量屬性的常用方法是“細(xì)分——求和——取極限”,這種方法,在學(xué)完“微積分”的相關(guān)內(nèi)容后,不證自明,這里從略。

  畫圓柱、圓錐、圓臺和球的直觀圖的方法——正等測

  (1)正等測畫直觀圖的要求:

  ①畫正等測的X、Y、Z三個軸時(shí),z軸畫成鉛直方向,X軸和Y軸各與Z軸成120°。

  ②在投影圖上取線段長度的方法是:在三軸上或平行于三軸的線段都取實(shí)長。

  這里與斜二測畫直觀圖的方法不同,要注意它們的區(qū)別。

  (2)正等測圓柱、圓錐、圓臺的直觀圖的區(qū)別主要是水平放置的平面圖形。

  用正等測畫水平放置的平面圓形時(shí),將X軸畫成水平位置,Y軸畫成與X軸成120°,在投影圖上,X軸和Y軸上,或與X軸、Y軸平行的線段都取實(shí)長,在Z軸上或與Z軸平行的線段的畫法與斜二測相同,也都取實(shí)長。

  關(guān)于幾何體表面內(nèi)兩點(diǎn)間的最短距離問題

  柱、錐、臺的表面都可以平面展開,這些幾何體表面內(nèi)兩點(diǎn)間最短距離,就是其平面內(nèi)展開圖內(nèi)兩點(diǎn)間的線段長。

  由于球面不能平面展開,所以求球面內(nèi)兩點(diǎn)間的球面距離是一個全新的方法,這個最短距離是過這兩點(diǎn)大圓的劣弧長。

高二數(shù)學(xué)工作總結(jié) 篇29

  高中數(shù)學(xué)數(shù)列知識點(diǎn)總結(jié):等差數(shù)列公式

  等差數(shù)列的通項(xiàng)公式為:an=a1+(n-1)d

  或an=am+(n-m)d

  前n項(xiàng)和公式為:Sn=na1+[n(n-1)/2] d或sn=(a1+an)n/2

  若m+n=2p則:am+an=2ap

  以上n均為正整數(shù)

  文字翻譯

  第n項(xiàng)的值=首項(xiàng)+(項(xiàng)數(shù)-1)*公差

  前n項(xiàng)的和=(首項(xiàng)+末項(xiàng))*項(xiàng)數(shù)/2

  公差=后項(xiàng)-前項(xiàng)

  高中數(shù)學(xué)數(shù)列知識點(diǎn)總結(jié):等比數(shù)列公式

  等比數(shù)列求和公式

  (1) 等比數(shù)列:a (n+1)/an=q (n∈N)。

  (2) 通項(xiàng)公式:an=a1×q^(n-1); 推廣式:an=am×q^(n-m);

  (3) 求和公式:Sn=n×a1 (q=1) Sn=a1(1-q^n)/(1-q) =(a1-an×q)/(1-q) (q≠1) (q為公比,n為項(xiàng)數(shù))

  (4)性質(zhì):

  ①若 m、n、p、q∈N,且m+n=p+q,則am×an=ap×aq;

  ②在等比數(shù)列中,依次每 k項(xiàng)之和仍成等比數(shù)列.

  ③若m、n、q∈N,且m+n=2q,則am×an=aq^2

  (5)"G是a、b的等比中項(xiàng)""G^2=ab(G ≠ 0)".

  (6)在等比數(shù)列中,首項(xiàng)a1與公比q都不為零. 注意:上述公式中an表示等比數(shù)列的第n項(xiàng)。

  等比數(shù)列求和公式推導(dǎo): Sn=a1+a2+a3+...+an(公比為q) q*Sn=a1*q+a2*q+a3*q+...+an*q =a2+a3+a4+...+a(n+1) Sn-q*Sn=a1-a(n+1) (1-q)Sn=a1-a1*q^n Sn=(a1-a1*q^n)/(1-q) Sn=(a1-an*q)/(1-q) Sn=a1(1-q^n)/(1-q) Sn=k*(1-q^n)~y=k*(1-a^x)。

高二數(shù)學(xué)工作總結(jié) 篇30

  一、隨機(jī)事件

  主要掌握好(三四五)

  (1)事件的三種運(yùn)算:并(和)、交(積)、差;注意差A(yù)-B可以表示成A與B的逆的積。

  (2)四種運(yùn)算律:交換律、結(jié)合律、分配律、德莫根律。

  (3)事件的五種關(guān)系:包含、相等、互斥(互不相容)、對立、相互獨(dú)立。

  二、概率定義

  (1)統(tǒng)計(jì)定義:頻率穩(wěn)定在一個數(shù)附近,這個數(shù)稱為事件的概率;(2)古典定義:要求樣本空間只有有限個基本事件,每個基本事件出現(xiàn)的可能性相等,則事件A所含基本事件個數(shù)與樣本空間所含基本事件個數(shù)的比稱為事件的古典概率;

  (3)幾何概率:樣本空間中的元素有無窮多個,每個元素出現(xiàn)的可能性相等,則可以將樣本空間看成一個幾何圖形,事件A看成這個圖形的子集,它的概率通過子集圖形的大小與樣本空間圖形的大小的比來計(jì)算;

  (4)公理化定義:滿足三條公理的任何從樣本空間的子集集合到[0,1]的映射。

  三、概率性質(zhì)與公式

  (1)加法公式:P(A+B)=p(A)+P(B)-P(AB),特別地,如果A與B互不相容,則P(A+B)=P(A)+P(B);

  (2)差:P(A-B)=P(A)-P(AB),特別地,如果B包含于A,則P(A-B)=P(A)-P(B);

  (3)乘法公式:P(AB)=P(A)P(B|A)或P(AB)=P(A|B)P(B),特別地,如果A與B相互獨(dú)立,則P(AB)=P(A)P(B);

  (4)全概率公式:P(B)=∑P(Ai)P(B|Ai).它是由因求果,

  貝葉斯公式:P(Aj|B)=P(Aj)P(B|Aj)/∑P(Ai)P(B|Ai).它是由果索因;

  如果一個事件B可以在多種情形(原因)A1,A2,....,An下發(fā)生,則用全概率公式求B發(fā)生的概率;如果事件B已經(jīng)發(fā)生,要求它是由Aj引起的概率,則用貝葉斯公式.

  (5)二項(xiàng)概率公式:Pn(k)=C(n,k)p^k(1-p)^(n-k),k=0,1,2,....,n.當(dāng)一個問題可以看成n重貝努力試驗(yàn)(三個條件:n次重復(fù),每次只有A與A的逆可能發(fā)生,各次試驗(yàn)結(jié)果相互獨(dú)立)時(shí),要考慮二項(xiàng)概率公式.

高二數(shù)學(xué)工作總結(jié) 篇31

  一、事件

  1.在條件SS的必然事件.

  2.在條件S下,一定不會發(fā)生的事件,叫做相對于條件S的不可能事件.

  3.在條件SS的隨機(jī)事件.

  二、概率和頻率

  1.用概率度量隨機(jī)事件發(fā)生的可能性大小能為我們決策提供關(guān)鍵性依據(jù).

  2.在相同條件S下重復(fù)n次試驗(yàn),觀察某一事件A是否出現(xiàn),稱n次試驗(yàn)中事件A出現(xiàn)的次數(shù)nA

  nA為事件A出現(xiàn)的頻數(shù),稱事件A出現(xiàn)的比例fn(A)=為事件A出現(xiàn)的頻率.

  3.對于給定的隨機(jī)事件A,由于事件A發(fā)生的頻率fn(A)P(A),P(A).

  三、事件的關(guān)系與運(yùn)算

  四、概率的幾個基本性質(zhì)

  1.概率的取值范圍:

  2.必然事件的`概率P(E)=3.不可能事件的概率P(F)=

  4.概率的加法公式:

  如果事件A與事件B互斥,則P(AB)=P(A)+P(B).

  5.對立事件的概率:

  若事件A與事件B互為對立事件,則AB為必然事件.P(AB)=1,P(A)=1-P(B).

高二數(shù)學(xué)工作總結(jié)(通用31篇) 相關(guān)內(nèi)容:
  • 高二數(shù)學(xué)知識點(diǎn)總結(jié)(精選32篇)

    (1)必然事件:在條件S下,一定會發(fā)生的事件,叫相對于條件S的必然事件;(2)不可能事件:在條件S下,一定不會發(fā)生的事件,叫相對于條件S的不可能事件;(3)確定事件:必然事件和不可能事件統(tǒng)稱為相對于條件S的確定事件;(4)隨機(jī)事件:在條件S下...

  • 高二數(shù)學(xué)工作總結(jié)(精選32篇)

    物理實(shí)驗(yàn)是中學(xué)物理教學(xué)的重要內(nèi)容,通過實(shí)驗(yàn)教學(xué),幫助學(xué)生理解、掌握物理知識,學(xué)會實(shí)驗(yàn)技能、儀器的使用和操作,學(xué)習(xí)物理學(xué)研究問題的方法。物理實(shí)驗(yàn)的內(nèi)容,也是物理課程標(biāo)準(zhǔn)中的重要組成部分。...

  • 高一高二數(shù)學(xué)知識點(diǎn)整理(精選34篇)

    空間兩條直線只有三種位置關(guān)系:平行、相交、異面1、按是否共面可分為兩類:(1)共面:平行、相交(2)異面:異面直線的定義:不同在任何一個平面內(nèi)的兩條直線或既不平行也不相交。...

  • 高二數(shù)學(xué)復(fù)習(xí)知識點(diǎn)匯總(通用32篇)

    第一章:集合和函數(shù)的基本概念,錯誤基本都集中在空集這一概念上,而每次考試基本都會在選填題上涉及這一概念,一個不小心就是五分沒了。次一級的知識點(diǎn)就是集合的韋恩圖,會畫圖,集合的“并、補(bǔ)、交、非”也就解決了,還有函數(shù)的定義域...

  • 高二數(shù)學(xué)工作總結(jié)(通用34篇)

    上個學(xué)期,根據(jù)需要,學(xué)校安排我上高二數(shù)學(xué)文科,在這一學(xué)期里我從各方面嚴(yán)格要求自己,在教學(xué)上虛心向老教師請教,結(jié)合本校和班級學(xué)生的實(shí)際情況,針對性的開展教學(xué)工作,使工作有計(jì)劃,有組織,有步驟。...

  • 高二數(shù)學(xué)知識點(diǎn)總結(jié)匯編(通用3篇)

    一、直線與圓:1、直線的傾斜角的范圍是在平面直角坐標(biāo)系中,對于一條與軸相交的直線,如果把軸繞著交點(diǎn)按逆時(shí)針方向轉(zhuǎn)到和直線重合時(shí)所轉(zhuǎn)的最小正角記為,就叫做直線的傾斜角。...

  • 高二數(shù)學(xué)必修五知識點(diǎn)總結(jié)(精選30篇)

    數(shù)列1、數(shù)列的定義及數(shù)列的通項(xiàng)公式:① an?f(n),數(shù)列是定義域?yàn)镹的函數(shù)f(n),當(dāng)n依次取1,2,???時(shí)的'一列函數(shù)值② i。歸納法若S0?0,則an不分段;若S0?0,則an分段iii。...

  • 高二數(shù)學(xué)期中考試總結(jié)(精選3篇)

    一、試題質(zhì)量分析值得肯定的方面:語數(shù)外科目的試題考察覆蓋面大,難度適中,試題新穎,靈活,注重主干知識考查,能對不同層次的學(xué)生進(jìn)行較好的考查與區(qū)分,對重點(diǎn)知識的考察比較全面。...

  • 高二數(shù)學(xué)知識點(diǎn)(精選31篇)

    在中國古代把數(shù)學(xué)叫算術(shù),又稱算學(xué),最后才改為數(shù)學(xué)。1.任意角(1)角的分類:①按旋轉(zhuǎn)方向不同分為正角、負(fù)角、零角。②按終邊位置不同分為象限角和軸線角。(2)終邊相同的角:終邊與角相同的角可寫成+k360(kZ)。...

  • 高二數(shù)學(xué)老師工作總結(jié)(精選3篇)

    “角的初步認(rèn)識”是人教版二年級上冊的資料,它是在學(xué)生已經(jīng)初步認(rèn)識長方形、正方形、三角形的基礎(chǔ)上教學(xué)的。角在生活的應(yīng)用十分廣泛,可是二年級的孩子對角的認(rèn)識大多還停留在“尖尖的一點(diǎn)”這一個層面上,很難抽象出數(shù)學(xué)中角的形象。...

  • 高二數(shù)學(xué)工作總結(jié)十一篇

    這學(xué)期我任高二兩個班的數(shù)學(xué)課,下面我對這學(xué)期的工作進(jìn)行一下總結(jié)。(一)在備課方面,我認(rèn)真鉆研教材,注意了解學(xué)生,潛心研究教法。這學(xué)期的教學(xué)內(nèi)容包括,排列、組合、二項(xiàng)式定理,概率,導(dǎo)數(shù)。...

  • 高二數(shù)學(xué)知識點(diǎn)總結(jié)集合(精選19篇)

    1、向量的加法向量的加法滿足平行四邊形法則和三角形法則。AB+BC=AC。a+b=(x+x',y+y')。a+0=0+a=a。向量加法的運(yùn)算律:交換律:a+b=b+a;結(jié)合律:(a+b)+c=a+(b+c)。...

  • 高二數(shù)學(xué)水平考知識點(diǎn)總結(jié)(通用17篇)

    1、直線的傾斜角的概念:當(dāng)直線l與x軸相交時(shí),取x軸作為基準(zhǔn),x軸正向與直線l向上方向之間所成的角α叫做直線l的傾斜角.特別地,當(dāng)直線l與x軸平行或重合時(shí),規(guī)定α=0°.2、傾斜角α的取值范圍:0°≤α180°.當(dāng)直線l與x軸垂直時(shí),α=90°.3、直...

  • 高二數(shù)學(xué)知識點(diǎn)總結(jié)歸納(精選17篇)

    1、在中學(xué)我們只研直圓柱、直圓錐和直圓臺。所以對圓柱、圓錐、圓臺的旋轉(zhuǎn)定義、實(shí)際上是直圓柱、直圓錐、直圓臺的定義。這樣定義直觀形象,便于理解,而且對它們的性質(zhì)也易推導(dǎo)。對于球的定義中,要注意區(qū)分球和球面的概念,球是實(shí)心的。...

  • 高二數(shù)學(xué)高效復(fù)習(xí)知識點(diǎn)歸納總結(jié)(精選16篇)

    一、直線與圓:1、直線的傾斜角的范圍是在平面直角坐標(biāo)系中,對于一條與軸相交的直線,如果把軸繞著交點(diǎn)按逆時(shí)針方向轉(zhuǎn)到和直線重合時(shí)所轉(zhuǎn)的最小正角記為,就叫做直線的傾斜角。...

  • 個人工作總結(jié)
主站蜘蛛池模板: 少妇和黑人老外做爰av | 无码精品视频一区二区三区 | 国产卡一卡2卡三卡免费视频 | 国产碰在79香蕉人人澡人人看喊 | 999这里只有是极品 久久综合色综合 | 特级片日本 | 日韩免费无码成人久久久久久片 | 欧美多人片高潮野外做片黑人 | 九色蝌蚪少妇 | 天天爽夜夜爽人人爽从早干到睌 | 狠狠色伊人亚洲综合第8页 日日干天夜夜 | 国产AV激情久久无码天堂 | 四虎影视88aa成人欧美 | 高潮网址 | 小男生自慰gay网站 αv免费视频 | 国产欧美日韩在线精品一区二区 | 国产操比视频 | 免费色视频在线观看 | 一区二区三区午夜无码视频 | 国产成人AV综合久久视色 | 久久综合伊人 | 黄视频网站在线看 | 色诱久久久久综合网YWWW | 国产不卡网站 | 三上悠亚久久精品 | 99草在线观看 | 欧美日韩国产的视频图片 | a天堂中文在线观看 | 久久久久亚洲AV无码永不 | 黄色片一级的 | 又色又爽又黄又免费看的视频 | 九九在线精品视频 | 成人黄网站片免费视频 | 欧美黄色一区二区三区 | 亚洲午夜精品a片一区二区无码l | 毛片特黄 | AV无码人妻一区二区三区牛牛 | 亚洲女同精品一区二区 | 九九久久久 | 特级无码一区二区三区毛片视频 | 爆乳一丝丝不挂裸体大胸美女 |