初中數學活動總結(通用32篇)
初中數學活動總結 篇1
一直以來,在試卷講評課的上法上總存在著一些困惑。例如,試卷上的錯題因人而異,如何上能照顧到全體,將每位學生出錯的問題解決?通過這次培訓我認識到,我們沒有足夠的時間面面俱到的講解,在一定的時間內想面面俱到,那么每個題目也只是蜻蜓點水,一節課下來真正沉淀到頭腦中的知識寥寥無幾。今后的試卷講評課我打算按照下面的思路來上,請劉老師多批評指正。
一、考試之后教師要做好測試分析,并充分備課。
通過測試分析,首先,弄清學生集中出錯的題目,找出學生的共性問題,并針對這些共性的問題展開備課。備課要備學生出錯的原因,試卷講評時如何對這些問題講解與完善。其次,弄清每位學生的得分,對于成績波動大的同學通過談話等方式及時了解情況并幫助解決困難。
二、下發試卷,學生自己糾錯。
給學生自己糾錯的機會,將能自己改正或通過小組合作改正的題目在試卷講評前改過來。
三、訂正答案,進一步改錯。
給學生標準答案,在答案的引導下,學生進一步尋找解題思路,完善解題步驟,查找丟分原因,加深對知識的理解。
四、重點題、錯題重點講解。
經過兩輪的改錯之后學生存留下的問題已經很少,教師試卷講評時就要解決這些遺留問題、重點題、錯題。對于這些問題可以通過分類講解、同類知識串講、變式訓練、一題多解、多個知識點上串下聯等方式講透。經過尋根問底,可使學生對不明確的知識點加深理解,再認識,然后鞏固練習。這個過程下來同時可復習到多個知識點,建立知識體系,拓展學生思維。
五、方法總結。
圍繞一個知識點講解之后,要讓學生總結解題思想、方法,掌握答題技巧。需要時可讓學生簡記。
六、解答疑問。
通過學生提出疑問,大家共同解答,完善學生對知識的認識。
近幾年教基礎年級,所以感覺上章節復習課較多,專題復習課很少。我們學校的章節復習課與劉老師的“出示問題,引出知識”是一致的。通過問題的解決實現知識點的復習。
通過聽兩位韓老師的課我感覺有幾處大的收獲:
一、要想實現高效課堂,教師首先高效備課。從兩位老師對題目的選取上能看到她們備課的用心。值得學習。
二、充分放手給學生,讓學生思考、解決問題、總結方法。教師適時點撥。
三、重要知識點、思想、方法及時簡記。“好腦子不如爛筆頭”,的確如此。根據艾賓浩斯的遺忘規律,一節課下來學到的知識點總在慢慢遺忘,如果課堂上不把關鍵點記錄下來的話,回過頭來復習時頭腦中的知識漏洞難以得到修繕。
通過這次學習我感覺收獲很大,希望劉老師多組織類似活動幫助年輕教師成長。同時對于這次培訓的膚淺認識希望劉老師多批評指正。謝謝!
初中數學活動總結 篇2
1、圖形的相似
相似多邊形的對應邊的比值相等,對應角相等;
兩個多邊形的對應角相等,對應邊的比值也相等,那么這兩個多邊形相似;
相似比:相似多邊形對應邊的比值。
2、相似三角形
判定:
平行于三角形一邊的直線和其它兩邊相交,所構成的三角形和原三角形相似;
如果兩個三角形的三組對應邊的比相等,那么這兩個三角形相似;
如果兩個三角形的兩組對應邊的比相等,并且相應的夾角相等,那么兩個三角形相似;
如果一個三角形的兩個角與另一個三角形的兩個角對應相等,那么兩個三角形相似。
3相似三角形的周長和面積
相似三角形(多邊形)的周長的比等于相似比;
相似三角形(多邊形)的面積的比等于相似比的平方。
初中數學活動總結 篇3
圓柱體要領:如果用垂直于軸的兩個平面去截圓柱面,那么兩個截面和圓柱面所圍成的幾何體叫做直圓柱,簡稱圓柱。
圓柱體的定義
1、旋轉定義法:一個長方形以一邊為軸順時針或逆時針旋轉一周,所經過的空間叫做圓柱體。
2、平移定義法:以一個圓為底面,上或下移動一定的距離,所經過的空間叫做圓柱體。
性質 1.圓柱的兩個圓面叫底面,周圍的面叫側面,一個圓柱體是由兩個底面和一個側面組成的。
2.圓柱體的兩個底面是完全相同的兩個圓面。兩個底面之間的距離是圓柱體的高。
3.圓柱體的側面是一個曲面,圓柱體的側面的展開圖是一個長方形或正方形。
圓柱的側面積=底面周長x高,即:
S側面積=Ch=2πrh
底面周長C=2πr=πd
圓柱的表面積=側面積+底面積x2=2πr2+Ch=2πr(r+h)
4.圓柱的體積=底面積x高
即 V=S底面積×h=(π×r×r)h
5.等底等高的圓柱的體積是圓錐的3倍 6.圓柱體可以用一個平行四邊形圍成
圓柱的表面積= 圓柱的表面積=側面積+底面積x2
6.把圓柱沿底面直徑分成兩個同樣的部分,每一個部分叫半圓柱。這時與原來的圓柱比較,體積不變、表面積增加兩個直徑X高的長方形。
7.圓柱的軸截面是直徑x高的長方形,橫截面是與底面相同的圓。
初中數學活動總結 篇4
1、重心的定義:平面圖形中,幾何圖形的重心是當支撐或懸掛時圖形能在水平面處于平衡狀態,此時的支撐點或者懸掛點叫做平衡點,也叫做重心。
2、幾種幾何圖形的重心:
⑴線段的重心就是線段的中點;
⑵平行四邊形及特殊平行四邊形的重心是它的兩條對角線的交點;
⑶三角形的三條中線交于一點,這一點就是三角形的重心;
⑷任意多邊形都有重心,以多邊形的任意兩個頂點作為懸掛點,把多邊形懸掛時,過這兩點鉛垂線的交點就是這個多邊形的重心。
提示:⑴無論幾何圖形的形狀如何,重心都有且只有一個;
⑵從物理學角度看,幾何圖形在懸掛或支撐時,位于重心兩邊的力矩相同。
3、常見圖形重心的性質:
⑴線段的重心把線段分為兩等份;
⑵平行四邊形的重心把對角線分為兩等份;
⑶三角形的重心把中線分為1:2兩部分(重心到頂點距離占2份,重心到對邊中點距離占1份)。
上面對重心知識點的鞏固學習,同學們都能熟練的掌握了吧,希望同學們很好的復習學習數學知識。
初中數學活動總結 篇5
一.行程問題
行程問題要點解析
基本概念:行程問題是研究物體運動的,它研究的是物體速度、時間、行程三者之間的關系。基本公式:路程=速度×時間;路程÷時間=速度;路程÷速度=時間關鍵問題:確定行程過程中的位置相遇問題:速度和×相遇時間=相遇路程(請寫出其他公式)追擊問題:追擊時間=路程差÷速度差(寫出其他公式)流水問題:順水行程=(船速+水速)×順水時間逆水行程=(船速-水速)×逆水時間
順水速度=船速+水速逆水速度=船速-水速靜水速度=(順水速度+逆水速度)÷2水速=(順水速度-逆水速度)÷2基本題型:已知路程(相遇問題、追擊問題)、時間(相遇時間、追擊時間)、速度(速度和、速度差)中任意兩個量,求出第三個量。
二、利潤問題
每件商品的利潤=售價-進貨價毛利潤=銷售額-費用
利潤率=(售價--進價)/進價*100%
三、計算利息的基本公式
儲蓄存款利息計算的基本公式為:利息=本金×存期×利率利率的換算:
年利率、月利率、日利率三者的換算關系是:年利率=月利率×12(月)=日利率×360(天);月利率=年利率÷12(月)=日利率×30(天);日利率=年利率÷360(天)=月利率÷30(天)。使用利率要注意與存期相一致。利潤與折扣問題的公式利潤=售出價-成本利潤率=利潤÷成本×100%=(售出價÷成本-1)×100%漲跌金額=本金×漲跌百分比折扣=實際售價÷原售價×100%(折扣<1)利息=本金×利率×時間稅后利息=本金×利率×時間×(1-20%)
四、濃度問題
溶質的重量+溶劑的重量=溶液的重量溶質的重量÷溶液的重量×100%=濃度溶液的重量×濃度=溶質的重量溶質的重量÷濃度=溶液的重量五、增長率問題
若平均增長(下降)數百分率為x,增長(或下降)前的是a,增長(或下降)n次后的量是b,則它們的數量關系可表示為:a(1x)b或a(1x)b
初中數學活動總結 篇6
基于質數定義的基礎之上而建立的問題有很多世界級的難題,如哥德巴赫猜想等。
質數
質數又稱素數。指在一個大于1的自然數中,除了1和此整數自身外,不能被其他自然數整除的數。
素數在數論中有著很重要的地位。比1大但不是素數的數稱為合數。1和0既非素數也非合數。質數是與合數相對立的兩個概念,二者構成了數論當中最基礎的定義之一。
算術基本定理證明每個大于1的正整數都可以寫成素數的乘積,并且這種乘積的形式是唯一的。這個定理的重要一點是,將1排斥在素數集合以外。如果1被認為是素數,那么這些嚴格的闡述就不得不加上一些限制條件。
概念
只有1和它本身兩個約數的自然數,叫質數(Prime Number)。(如:由2÷1=2,2÷2=1,可知2的約數只有1和它本身2這兩個約數,所以2就是質數。與之相對立的是合數:“除了1和它本身兩個約數外,還有其它約數的數,叫合數。”如:4÷1=4,4÷2=2,4÷4=1,很顯然,4的約數除了1和它本身4這兩個約數以外,還有約數2,所以4是合數。)
100以內的質數有2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,在100內共有25個質數。
注:1既不是質數也不是合數。因為它的約數有且只有1這一個約數。
初中數學活動總結 篇7
1.對稱軸:如果一個圖形沿某條直線折疊后,直線兩旁的部分能夠互相重合,那么這個圖形叫做軸對稱圖形;這條直線叫做對稱軸。
2.性質:(1)軸對稱圖形的對稱軸,是任何一對對應點所連線段的垂直平分線。
(2)角平分線上的點到角兩邊距離相等。
(3)線段垂直平分線上的任意一點到線段兩個端點的距離相等。
(4)與一條線段兩個端點距離相等的點,在這條線段的垂直平分線上。
(5)軸對稱圖形上對應線段相等、對應角相等。
3.等腰三角形的性質:等腰三角形的兩個底角相等,(等邊對等角)
4.等腰三角形的頂角平分線、底邊上的高、底邊上的中線互相重合,簡稱為“三線合一”。
5.等腰三角形的判定:等角對等邊。
6.等邊三角形角的特點:三個內角相等,等于60°,
7.等邊三角形的判定:三個角都相等的三角形是等腰三角形。
有一個角是60°的等腰三角形是等邊三角形
有兩個角是60°的三角形是等邊三角形。
8.直角三角形中,30°角所對的直角邊等于斜邊的一半。
9.直角三角形斜邊上的中線等于斜邊的一半。
本章內容要求學生在建立在軸對稱概念的基礎上,能夠對生活中的圖形進行分析鑒賞,親身經歷數學美,正確理解等腰三角形、等邊三角形等的性質和判定,并利用這些性質來解決一些數學問題。
初中數學活動總結 篇8
通過初中數學新課改教學,我有以下幾點粗淺體會,在教學中一定要:
一、激發學生潛能,鼓勵探索創新
建構主義學習理論認為,知識不是通過教師傳授而得到的,而是學習者在一定的社會文化背景下,借助其他人(包括教師、家長、同學)的幫助,利用必要的學習資源,主動地采用適合自身的學習方法,通過意義建構的方式而獲得的。這要求教師在課堂教學中,要根據教學內容創設情境,激發學生的學習熱情,挖掘學生的潛能,鼓勵學生大膽創新與實踐。要讓學生在自主探索和合作交流過程中獲得基本數學知識和技能,使他們覺得每項知識都是他們實踐創造出來的,而不是教師強加給他們的。
二、轉變教育觀念,發揚教學民主
數學教學活動必須建立在學生的認知發展水平和已有的知識經驗基礎之上。在教學過程中,教師要轉變思想,更新教育觀念,把學習的主動權交給學生,鼓勵學生積極參與教學活動。教師要走出演講者的角色,成為全體學生學習的組織者、激勵者、引導者、協調者和合作者。學生能自己做的事教師不能代勞。教師的主要任務應是在學生的學習過程中,在恰當的時候給予恰當的引導與幫助。要讓學生通過親身經歷、體驗數學知識的形成和應用過程來獲取知識,發展能力。即教師扮演好導演角色,學生扮演好小演員角色。 例如在學習同類項概念時,我針對初一學生的年齡特點,組織“找同類項朋友”的游戲。具體做法是這樣的:把事先準備好的配組同類項卡片發給每個學生,一個同學找到自己的同類項朋友后,被“擠”出座位的另一個學生再去找自己的同類項朋友,比一比誰找得既快又準。這種生動的`形式和有趣的方法能使學生充分活動,學習興趣大增,學生在愉悅的氣氛中掌握了確定同類項的方法和合并同類項的法則。
三、聯系生活實際,培養學習興趣
某些學生不想學習或討厭學習,是因為他們覺得學習枯燥無味,認為學習數學就是把那些公式、定理、法則和解題規律記熟,然后反反復復地做題。新教材的內容編排切實體現了數學來源于生活又服務于生活的思想,通過生活中的數學問題或我們身邊的數學事例來闡明數學知識的形成與發展過程。在教學過程中,教師要利用好教材列舉的與我們生活息息相關的數學素材和形象的圖表來培養學生的學習興趣。教師要尊重學生,熱愛學生,關心學生,經常給予學生鼓勵和幫助。學習上要及時總結表彰,使學生充分感受到成功的喜悅,感受到學習是一件愉快的事情。要通過自己的教學,使學生樂學、愿學、想學,感受到學習是一件很有趣的事情,值得為學習而勤奮,不會有一點苦的感覺。
例如在學習“實踐與探索”中的儲蓄問題時,我提前一周布置學生到本縣的幾家銀行去調查有關不同種類儲蓄的利率問題。教學中,讓每個學生先展示自己所到銀行收集到的各種各樣有關儲蓄的信息,然后再按每四人一組根據收集到的信息編寫有關儲蓄的應用題,教師可以有選擇地展示學生的學習成果,讓全班學生相互討論、合作攻關,最后選派一些小組的代表作總結發言,老師點評,對做得較好的同學進行表揚。通過這樣教學,學生在愉快中學到了知識,收到了良好的效果。
新教材中編排的有關內容,如“地磚的鋪設”、“圖標的收集”、“打折銷售”等等,教師都可以充分利用,讓學生走出課堂去學習,體會數學與生活的密切聯系,培養學生的學習興趣。
四、關注個體差異,促使人人發展
《數學課程標準》指出:數學教育要面向全體學生,實現:人人學有價值的數學,人人都能獲得必需的數學,不同的人在數學上得到不同的發展。數學教育要促進每一個學生的發展,即要為所有學生打好共同基礎,也要注意發展學生的個性和特長。由于各種不同的因素,學生在數學知識、技能、能力方面和志趣上存在差異,教師在教學中要承認這種差異,因材施教,因勢利導。要從學生實際出發,兼顧學習有困難和學有余力的學生,通過多種途徑和方法,滿足他們的學習需求,發展他們的數學才能。 新教材設計了不少如“思考”、“探索”、“討論”、“觀察”、“試一試”、“做一做”等問題,教師可根據實際情況組織學生小組合作學習,在小組成員的安排上優、中、差各級知識水平學生要合理搭配,以優等生的思維方式來啟迪差生,以優等生的學習熱情來感染差生。在讓學生獨立思考時,要盡量多留一些時間,不能讓優等生的回答剝奪差生的思考。對于數學成績較好的學生,教師也可另外選擇一些較靈活的問題讓他們思考、探究,以擴大學生的知識面,提高數學成績。
五、媒體輔助教學,提高教學效益
《數學課程標準》指出:教師要充分利用現代教育技術輔助教學,大力開發并向學生提供更為豐富的學習資源,把現代信息技術作為學生學習數學和解決問題的有力工具,致力于改變學生的學習方式,使學生樂意并有更多的精力投入到現實的、探索性的數學活動中去。因此,在課堂教學中,教師要根據教學內容恰當地運用計算機進行輔助教學,為學生提供更為廣闊的自由活動的時間和空間,提供更為豐富的數學學習資源。 總之,只要我們在教學過程中能堅持利用新課程的理念來指導課堂教學,善于運用豐富多彩的課堂活動方式和教學手段,盡可能多地為學生創造動口、動腦、動手的機會,讓他們更多地參與教學,學生學習數學的主動性和積極性就會得到不斷加強,學生的數學素養和創新能力就一定會得到全面的提高與發展。
初中數學活動總結 篇9
一、初中數學教學結課所遵循的原則
(一)鞏固性原則。結課遵循鞏固性原則是課堂結尾最基本的要求,一個教師在結課時都應該做到這一點,梳理所傳授的知識的結構,將相關知識放在一起進行分析比較,著重強調重要的概念、定理和公式等,鞏固基礎知識和基本技能,加深學生對知識的印象。
(二)多樣性原則。很多人在教學時都是用布置作業來結束課堂,其實,結課不應該僅僅局限于布置作業,它應該是靈活多變的,可以根據教師與學生的區別、課型與教學內容的差異,甚至不同的教學情境來選擇相應的結課方式。滿足多樣性的原則。
(三)概括性原則。一節課四十多分鐘,教師往往向學生傳授了很多知識,在課程的結尾,教師要學會對整節課所傳授的內容進行高度地概括,語言要盡量簡練,使學生能加深印象,掌握知識的規律和竅門,能做到學以致用。
(四)靈活性原則。教學情況是不確定的,變化的,因此,數學教學中的結課要滿足靈活性原則,對于意料之外的教學情境,教師要做到靈活應變,因勢利導,盡量讓結課做到圓滿,使整節課都精彩紛呈。
(五)發展性原則。初中數學教學的結課遵循發展性原則,要求教師在進行結課時對課堂知識進行延展和深化,給學生留下一定的探究空間,引導學生自主地發現問題、分析問題、解決問題。
二、初中數學教學結課方式
(一)歸納總結法。在初中數學教學當中,歸納總結法是使用最為廣泛的一種結課方法。利用歸納總結法進行結課,教師需要對本節課的主要講授內容進行總結,對重點與難點進行強調。在歸納總結法引導的結課環節當中,學生會再次建立一個數學知識體系,為自己的知識體系進行補充與明確。學生對于數學課堂學習內容的完整印象往往來自于歸納總結式的結課,同時,這對于學生總結能力與概括能力的提高較為有利。比如在進行“平行四邊形”的講解之時,教師可以這樣進行結課:本節課我們學習的對象是平行四邊形,在課上我們由生活實例引出了平行四邊形的定義。
通過對比分析,總結出平行四邊形的.性質。同學們要做的就是在課下進行復習,重點掌握平行四邊形的性質以及運用方法。這樣的歸納,可以讓學生對課堂學習內容進行回顧,明確自己是否已經掌握課堂的重點與難點。但是,歸納總結法對于學生學習興趣的激發并沒有明顯的作用,是一種較為中規中矩的結課方式。因此,在運用歸納總結法進行結課之時,教師要加強對結課語言的重視,利用輕松的語氣與平等的語言使課堂氛圍得以緩解。
(二)練習鞏固法。初中數學課堂上,教師對數學知識進行講授,其最終目的就是讓學生利用數學知識解決現實問題。在教師講解的引導之下,學生所獲得的數學知識都是間接知識。通過練習,學生可以獲得直接的知識,更可以通過練習發現自己掌握不足之處。練習鞏固法是對學生數學知識應用能力促進作用最為明顯的一種結課方法。教師在課堂的末尾,利用學生能力所及范圍之內的習題,再次集中學生的注意力,推動其運用剛剛學會的知識。
拿“三視圖”的講解來說,教師在課上要為學生講解三視圖的原理與三視圖的畫法。而三視圖只有在學生親身應用之后,才能更加明白。因此,在離下課還有十分鐘或者五分鐘的時候,教師可以為學生安排練習,讓學生自己進行三視圖的繪制。
(三)設置懸念法。設置懸念法是最受推崇的結課方法,利用懸念的設置結束一節初中數學課,可以為學生留下最大的懸念。設置懸念的方法有很多,教師可以利用對已學知識的回顧,引導學生從中發現學習的不完整性或者漏洞。在進行回顧的時候,引導學生提出問題,多問幾個為什么,多找到疑惑之處,這對于下一節課中學生的學習熱情激發有著重要的影響。在結課時間段內,教師重復此條性質,引導學生將正方形引入到長方形當中。教師可以對學生提問:同學們,正方形與長方形有著同樣的性質,那么正方形與長方形有著什么樣的關系呢?在教師的疑問下,學生也會就此進行思考,對于下節課充滿好奇。
(四)情感激勵法。情感激勵法是極具有創新意義的初中數學結課方法,教師利用飽滿的熱情對初中數學知識的應用范圍進行表達,可以引起學生對于已學知識的重視。在情感激勵之下,學生會與教師產生共鳴,共同投入到初中數學的學習活動當中去。在應用情感激勵方法進行結課時,教師一定要關注自身的真情實感,引導學生入境。
對于“統計”教學來講,在課堂的結尾,教師可以利用國家與社會發展衡量數據GDP為學生做統計作用的介紹,對學生的學習進行激勵。教師可以這樣進行結課:GDP增長率體現著我國社會經濟發展的前景,也肯定著社會經濟發展成果。而GDP增長率的出現很大程度上依賴于我們這節課上你們學到的數學知識。所以,同學們,學好統計知識,可以使你成為一個社會分析小專家,洞察社會的進步與發展。這樣的結課,可以使學生熱血沸騰,找到學習成就感。
初中數學活動總結 篇10
初中數學集合的運算中考知識點集錦
集合的運算知識:它包括有交換律、結合律、分配對偶律、對偶律、同一律等。
集合的運算定律
交換律:A∩B=B∩A
A∪B=B∪A
結合律:A∪(B∪C)=(A∪B)∪C
A∩(B∩C)=(A∩B)∩C
分配對偶律:A∩(B∪C)=(A∩B)∪(A∩C)
A∪(B∩C)=(A∪B)∩(A∪C)
對偶律:(A∪B)^C=A^C∩B^C
(A∩B)^C=A^C∪B^C
同一律:A∪Φ=A
A∩U=A
求補律:A∪A'=U
A∩A'=Φ
對合律:(A')'=A
等冪律:A∪A=A
A∩A=A
零一律:A∪U=U
A∩U=A
吸收律:A∪(A∩B)=A
A∩(A∪B)=A
德·摩根定律(反演律):(A∪B)'=A'∩B'
(A∩B)'=A'∪B'
知識拓展:容斥原理(特殊情況):card(A∪B)=card(A)+card(B)-card(A∩B)
初中數學活動總結 篇11
本屆九年級學生基礎高低參差不齊,有的基礎較牢,成績較好。當然也有個別學生沒有養成良好的學習習慣、行為習慣。這樣要因材施教,使他們在各自原有的基礎上不斷發展進步。從考試情況來看:優等生占8%,學習發展生占55%。總體情況分析:學生兩極分化十分嚴重,優等生比例偏小,學習發展生所占比例太大,其中發展生大多數對學習熱情不高,不求上進。而其中的優等生大多對學習熱情高,但對問題的分析能力、計算能力、概括能力存在嚴重的不足,尤其是所涉及的知識拓展和知識的綜合能力方面不夠好,學生反應能力弱。
根據以上情況分析:產生嚴重兩極分化的主要原因是學生在學生基礎太差,學習習慣差,許多學生不會進行知識的梳理,同時學生面臨畢業和升學的雙重壓力等,致使許多學生產生了厭學心理。為了徹底解決了以上問題,應據實際情況,創新課堂教學模式,推行“自主互動”教學法,真正讓學生成為課堂的主人,體驗到“我上學,我快樂;我學習,我提高”。首先從培養學生的興趣入手,分類指導,加大平日課堂的要求及其它的有力措施,平日認真備課、批改作業,做好優生優培和學習困難生轉化工作。數學基本概念的教學對于學生學好數學是很重要的。在復習中,既要注意概念的科學性,又要注意概念形成的階段性。由于概念是逐步發展的,因此要特別注意遵循循序漸進,由淺入深的原則。對于某些概念不能一次就透徹地揭示其涵義,也不應把一些初步的概念絕對化。在教學中要盡可能做到通俗易懂,通過對分析、比較、抽象、概括,使學生形成概念,并注意引導學生在學習,生活和勞動中應用學過的概念,以便不斷加深對概念的理解和提高運用數學知識的能力。在平日講課中學會對比。要在區別的基礎上進行記憶,在掌握時應進行對比,抓住本質、概念特征,加以記憶。激發學生學習數學的興趣,幫助學生形成概念,獲得知識和技能,培養觀察和分析推理能力,培養學生實事求是、嚴肅認真的科學態度和科學的學習方法。所以在復習中在加強指導和練習,加大對學生所學知識的檢查,搞好今學期數學課的“單元綜合課”模式探索和自考工作,并做好及時的講評和反饋學生情況。
加強課堂教學方式方法管理,把課堂時間還給學生,把學習的主動權還給學生,使課堂教學真正成為教師指導下學生自主學習、自主探究和合作交流的場所。講全面,提倡以學定教,以學定講,努力增強講授的針對性、實效性,努力減少多余的講授,不著邊際的指導和毫無意義的提問,從嚴把握課堂學、講、練的時間結構,根據學科特點和不同課型確定適宜講授時間,嚴格控制講授時間和價值不大的師生對話時間。
初中數學活動總結 篇12
一、數與代數A:數與式:
1:有理數
有理數:
①整數→正整數/0/負整數
②分數→正分數/負分數
數軸:
①畫一條水平直線,在直線上取一點表示0(原點),選取某一長度作為單位長度,規定直線上向右的方向為正方向,就得到數軸
②任何一個有理數都可以用數軸上的一個點來表示。
③如果兩個數只有符號不同,那么我們稱其中一個數為另外一個數的相反數,也稱這兩個數互為相反數。
在數軸上,表示互為相反數的兩個點,位于原點的兩側,并且與原點距離相等。
④數軸上兩個點表示的數,右邊的總比左邊的大。正數大于0,負數小于0,正數大于負數。
絕對值:
①在數軸上,一個數所對應的點與原點的距離叫做該數的絕對值。
②正數的絕對值是他本身/負數的絕對值是他的相反數/0的絕對值是0。兩個負數比較大小,絕對值大的反而小。
有理數的運算:加法:
①同號相加,取相同的符號,把絕對值相加。
②異號相加,絕對值相等時和為0;絕對值不等時,取絕對值較大的數的符號,并用較大的絕對值減去較小的絕對值。③一個數與0相加不變。
減法: 減去一個數,等于加上這個數的相反數。
乘法:①兩數相乘,同號得正,異號得負,絕對值相乘。
②任何數與0相乘得0。
③乘積為1的兩個有理數互為倒數。
除法:
①除以一個數等于乘以一個數的倒數。
②0不能作除數。
乘方:求N個相同因數A的積的運算叫做乘方,乘方的結果叫冪,A叫底數,N叫次數。
混合順序:先算乘法,再算乘除,最后算加減,有括號要先算括號里的。
2:實數
無理數:無限不循環小數叫無理數
平方根:
①如果一個正數X的平方等于A,那么這個正數X就叫做A的算術平方根。
②如果一個數X的平方等于A,那么這個數X就叫做A的平方根。
③一個正數有2個平方根/0的平方根為0/負數沒有平方根。
④求一個數A的平方根運算,叫做開平方,其中A叫做被開方數。
立方根:
①如果一個數X的立方等于A,那么這個數X就叫做A的立方根。
②正數的立方根是正數/0的立方根是0/負數的立方根是負數。
③求一個數A的立方根的運算叫開立方,其中A叫做被開方數。
實數:
①實數分有理數和無理數。
②在實數范圍內,相反數,倒數,絕對值的意義和有理數范圍內的相反數,倒數,絕對值的意義完全一樣。
③每一個實數都可以在數軸上的一個點來表示。
3:代數式
代數式:單獨一個數或者一個字母也是代數式。
合并同類項:
①所含字母相同,并且相同字母的指數也相同的項,叫做同類項。
②把同類項合并成一項就叫做合并同類項。
③在合并同類項時,我們把同類項的系數相加,字母和字母的指數不變。
4:整式與分式
整式:
①數與字母的乘積的代數式叫單項式,幾個單項式的.和叫多項式,單項式和多項式統稱整式。
②一個單項式中,所有字母的指數和叫做這個單項式的次數。
③一個多項式中,次數最高的項的次數叫做這個多項式的次數。
整式運算:加減運算時,如果遇到括號先去括號,再合并同類項。
冪的運算:AM。AN=A(M+N) (AM)N=AMN (AB)N=AN。BN 除法一樣。
A0=1,A-P=1/AP
整式的乘法:
①單項式與單項式相乘,把他們的系數,相同字母的冪分別相乘,其余字母連同他的指數不變,作為積的因式。
②單項式與多項式相乘,就是根據分配律用單項式去乘多項式的每一項,再把所得的積相加。
③多項式與多項式相乘,先用一個多項式的每一項乘另外一個多項式的每一項,再把所得的積相加。
公式兩條:平方差公式/完全平方公式
整式的除法:
①單項式相除,把系數,同底數冪分別相除后,作為商的因式;對于只在被除式里含有的字母,則連同他的指數一起作為商的一個因式。
②多項式除以單項式,先把這個多項式的每一項分別除以單項式,再把所得的商相加。
分解因式:把一個多項式化成幾個整式的積的形式,這種變化叫做把這個多項式分解因式
方法:提公因式法/運用公式法/分組分解法/十字相乘法
分式:
①整式A除以整式B,如果除式B中含有分母,那么這個就是分式,對于任何一個分式,分母不為0。
②分式的分子與分母同乘以或除以同一個不等于0的整式,分式的值不變。
分式的運算:乘法:把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。
除法:除以一個分式等于乘以這個分式的倒數。
加減法:
①同分母的分式相加減,分母不變,把分子相加減。
②異分母的分式先通分,化為同分母的分式,再加減。
分式方程:
①分母中含有未知數的方程叫分式方程。
②使方程的分母為0的解稱為原方程的增根。
B:方程與不等式
1:方程與方程組
一元一次方程:
①在一個方程中,只含有一個未知數,并且未知數的指數是1,這樣的方程叫一元一次方程。
②等式兩邊同時加上或減去或乘以或除以(不為0)一個代數式,所得結果仍是等式。
解一元一次方程的步驟:去分母,移項,合并同類項,未知數系數化為1。
二元一次方程:含有兩個未知數,并且所含未知數的項的次數都是1的方程叫做二元一次方程。
二元一次方程組:兩個二元一次方程組成的方程組叫做二元一次方程組。
適合一個二元一次方程的一組未知數的值,叫做這個二元一次方程的一個解。
二元一次方程組中各個方程的公共解,叫做這個二元一次方程的解。
解二元一次方程組的方法:代入消元法/加減消元法。
2:不等式與不等式組
不等式:
①用符號〉,=,〈號連接的式子叫不等式。
②不等式的兩邊都加上或減去同一個整式,不等號的方向不變。
③不等式的兩邊都乘以或者除以一個正數,不等號方向不變。
④不等式的兩邊都乘以或除以同一個負數,不等號方向相反。
不等式的解集:
①能使不等式成立的未知數的值,叫做不等式的解。
②一個含有未知數的不等式的所有解,組成這個不等式的解集。
③求不等式解集的過程叫做解不等式。
一元一次不等式:左右兩邊都是整式,只含有一個未知數,且未知數的最高次數是1的不等式叫一元一次不等式。
一元一次不等式組:
①關于同一個未知數的幾個一元一次不等式合在一起,就組成了一元一次不等式組。
②一元一次不等式組中各個不等式的解集的公共部分,叫做這個一元一次不等式組的解集。
③求不等式組解集的過程,叫做解不等式組。
3:函數
變量:因變量,自變量。
在用圖象表示變量之間的關系時,通常用水平方向的數軸上的點自變量,用豎直方向的數軸上的點表示因變量。
一次函數:
①若兩個變量X,Y間的關系式可以表示成Y=KX+B(B為常數,K不等于0)的形式,則稱Y是X的一次函數。
②當B=0時,稱Y是X的正比例函數。
一次函數的圖象:
①把一個函數的自變量X與對應的因變量Y的值分別作為點的橫坐標與縱坐標,在直角坐標系內描出它的對應點,所有這些點組成的圖形叫做該函數的圖象。
②正比例函數Y=KX的圖象是經過原點的一條直線。
③在一次函數中,當K〈0,B〈O,則經234象限;當K〈0,B〉0時,則經124象限;當K〉0,B〈0時,則經134象限;當K〉0,B〉0時,則經123象限。
④當K〉0時,Y的值隨X值的增大而增大,當X〈0時,Y的值隨X值的增大而減少。
二、空間與圖形
A:圖形的認識:
1:點,線,面
點,線,面:
①圖形是由點,線,面構成的。
②面與面相交得線,線與線相交得點。
③點動成線,線動成面,面動成體。
展開與折疊:
①在棱柱中,任何相鄰的兩個面的交線叫做棱,側棱是相鄰兩個側面的交線,棱柱的所有側棱長相等,棱柱的上下底面的形狀相同,側面的形狀都是長方體。
②N棱柱就是底面圖形有N條邊的棱柱。
截一個幾何體:用一個平面去截一個圖形,截出的面叫做截面。
3視圖:主視圖,左視圖,俯視圖。
多邊形:他們是由一些不在同一條直線上的線段依次首尾相連組成的封閉圖形。
弧,扇形:
①由一條弧和經過這條弧的端點的兩條半徑所組成的圖形叫扇形。
②圓可以分割成若干個扇形。
2:角
線:
①線段有兩個端點。
②將線段向一個方向無限延長就形成了射線。射線只有一個端點。
③將線段的兩端無限延長就形成了直線。直線沒有端點。
④經過兩點有且只有一條直線。
比較長短:
①兩點之間的所有連線中,線段最短。
②兩點之間線段的長度,叫做這兩點之間的距離。
角的度量與表示:
①角由兩條具有公共端點的射線組成,兩條射線的公共端點是這個角的頂點。
②一度的1/60是一分,一分的1/60是一秒。
角的比較:
①角也可以看成是由一條射線繞著他的端點旋轉而成的。
②一條射線繞著他的端點旋轉,當終邊和始邊成一條直線時,所成的角叫做平角。始邊繼續旋轉,當他又和始邊重合時
初中數學活動總結 篇13
空間幾何體的類型
1、多面體:由若干個平面多邊形圍成的幾何體。圍成多面體的各個多邊形叫做多面體的面,相鄰兩個面的'公共邊叫做多面體的棱,棱與棱的公共點叫做多面體的頂點。
2、旋轉體:把一個平面圖形繞它所在的平面內的一條定直線旋轉形成了封閉幾何體。其中,這條直線稱為旋轉體的軸。
高中數學知識點:幾種空間幾何體的結構特征
棱柱的定義:有兩個面互相平行,其余各面都是四邊形,并且每相鄰兩個四邊形的公共邊都互相平行,由這些面所圍成的幾何體叫做棱柱。
棱柱的面積和體積公式
S直棱柱側面=c·h(c為底面周長,h為棱柱的高)
S直棱柱全=c·h+2S底
V棱柱=S底·h
空間幾何體體積計算公式
1、長方體體積
V=abc=Sh
2、柱體體積
所有柱體
V=Sh、即柱體的體積等于它的底面積S和高h的積、
圓柱
V=πr2h、
3、棱錐
V=1/3xSh
4、圓錐
V=1/3xπr2h
5、棱臺
V=1/3xh(S+(√SS)+S)
6、圓臺
V=1/3xπh(r2+rr+r2)
7、球
V=4/3xπR3
初中數學活動總結 篇14
中考數學知識點:分式混合運算法則
分式四則運算,順序乘除加減,乘除同級運算,除法符號須變(乘);乘法進行化簡,因式分解在先,分子分母相約,然后再行運算;加減分母需同,分母化積關鍵;找出最簡公分母,通分不是很難;變號必須兩處,結果要求最簡.
分式混合運算法則:
分式四則運算,順序乘除加減,乘除同級運算,除法符號須變(乘);
乘法進行化簡,因式分解在先,分子分母相約,然后再行運算;
加減分母需同,分母化積關鍵;找出最簡公分母,通分不是很難;
變號必須兩處,結果要求最簡.
中考數學二次根式的加減法知識點總結
二次根式的加減法
知識點1:同類二次根式
(Ⅰ)幾個二次根式化成最簡二次根式以后,如果被開方數相同,這幾個二次根式叫做同類二次根式,如這樣的二次根式都是同類二次根式。
(Ⅱ)判斷同類二次根式的方法:(1)首先將不是最簡形式的二次根式化為最簡二次根式以后,再看被開方數是否相同。(2)幾個二次根式是否是同類二次根式,只與被開方數及根指數有關,而與根號外的因式無關。
知識點2:合并同類二次根式的方法
合并同類二次根式的理論依據是逆用乘法對加法的分配律,合并同類二次根式,只把它們的系數相加,根指數和被開方數都不變,不是同類二次根式的不能合并。
知識點3:二次根式的加減法則
二次根式相加減先把各個二次根式化成最簡二次根式,再把同類二次根式合并,合并的方法為系數相加,根式不變。
知識點4:二次根式的混合運算方法和順序
運算方法是利用加、減、乘、除法則以及與多項式乘法類似法則進行混合運算。運算的順序是先乘方,后乘除,最后加減,有括號的先算括號內的。
知識點5:二次根式的加減法則與乘除法則的區別
乘除法中,系數相乘,被開方數相乘,與兩根式是否是同類根式無關,加減法中,系數相加,被開方數不變而且兩根式須是同類最簡根式。
中考數學知識點:直角三角形
★重點★解直角三角形
☆內容提要☆
一、三角函數
1.定義:在Rt△ABC中,∠C=Rt∠,則sinA=;cosA=;tgA=;ctgA=.
2.特殊角的三角函數值:
0°30°45°60°90°
sinα
cosα
tgα/
ctgα/
3.互余兩角的三角函數關系:sin(90°-α)=cosα;…
4.三角函數值隨角度變化的關系
5.查三角函數表
二、解直角三角形
1.定義:已知邊和角(兩個,其中必有一邊)→所有未知的邊和角。
2.依據:①邊的關系:
②角的關系:A+B=90°
③邊角關系:三角函數的定義。
注意:盡量避免使用中間數據和除法。
三、對實際問題的處理
1.俯、仰角:
2.方位角、象限角:
3.坡度:
4.在兩個直角三角形中,都缺解直角三角形的條件時,可用列方程的辦法解決。
初中數學活動總結 篇15
作為一名青年教師,我有幸參加了新課程的教學。新課改是一種新理念,新思想。這對我們每個人來說都是一種挑戰,都是一個新的開始,因此我們每一個教師都必須進行各種嘗試,在不斷的探索中成長。新課程理念的核心是"為了每一位學生的發展",我想這就是評價新課程課堂教學的惟一標準。通過教學實踐,慢慢理出一點頭緒,下面就近兩年多教學情況談談自己的一點體會:
一、 改革對中學數學課堂教學的評價
隨著知識經濟時代的到來,人們越來越認識到,受教育者能否在未來生活、學習、工作中取得成功,不僅取決于他們擁有知識、技能的多少和一般智力水平的高低,而且還取決于他們的興趣、動機、態度、意志力、自信心等非智力因素的發展水平,以及分析問題和解決問題能力的高低。基于這一認識,中學數學課堂教學評標準粗線條地確定為五個方面:學生喜歡不喜歡上數學課;學生投入數學學習的程度;創新意識和探索精神培養體現的情況;數學交流和解決數學問題能力的發展狀況;基礎知識和基本技能掌握情況。學生喜歡不喜歡上數學課,這一項指標主要評價師生關系是否和諧。學生學習數學的心理自由、心理安全的環境是否形成,學生學習數學的興趣、情感是否得到了較好的培養。 學生投入學習的程度,這一項指標主要評價教學設計是否符合學生實際水平,留有的思維空間是否能引起學生的認知需要。創新意識和探索精神培養體現的情況,這一項指標主要是通過學生獨立思考、相互啟發,敢于發表新想法、新做法的表現情況,評價學生智力潛能是否得到較好的發揮。數學交流和解決數學問題能力的發展狀況,這一項指標主要評價學生尊重別人、取長補短,合作學習習慣養成的情況和靈活、綜合運用知識的水平,特別是學生獨立構建新知識的能力。通過兩年多的研究,我逐漸受了新的教學思想,駕馭課堂和管理學生的水平不斷提高,而且對改革很有興趣,因此保證了實驗工作的順利進展。
二、大膽慎重地改革教材
人教版初中數學教材應該說是一套很不錯的教材,但我總感覺它的知識體系不夠系統,有些零散,為此,我在反復研究人教版數學教材的基礎上,同時借鑒原來的教材,并對它們進行有理有序的整合。使它既能體現新課程的標準,又使知識變得系統,從而體現數學的邏輯美以及嚴密性。如:在八年級第二十一章分式中的“分式的的乘除法”接著是“分式的加減”、“分式的混合運算”、“可化為一元一次方程的分式方程”再接著才是“負指數和科學記數法”,我覺得應該把“負指數和科學記數法”這一節直接放在“分式的的乘除法”,這樣學生學習負指數就覺得比較自然并且容易接受。因此我就這樣對教材處理一下,效果果真不錯。
三、探索新的課堂組織形式
大課堂教學有利于教師為中心的講解,但不利于以學生為中心的自主學習。要想真正把學生放在學習的中心地位,不改變長期延續的大課堂教學的組織形式是很難辦到的。為此,我積極探索班級、小組、個人多種學習方式相結合的組織形式,重點加強小組研討的學習方式,相對削弱大課堂講解的學習方式。在這樣的課堂上,給學生提供充分的自主活動的空間和廣泛交流思想的機會,引導學生獨立探索、相互研究,大膽發表創新見解。
四、逐步推行探索式、討論式的教學方法
關于教學方法的改革,很重要的問題是觀念的轉變問題。目前不少教師還把教學過程看成是學生"接受"書本知識的過程。說得具體一點,就是教師把書本內容講清楚,或一問一答問清楚,學生用心記住,能按時完成作業和應付考試,就算圓滿完成了教學任務。這樣做其實把一種"隱形的"、寶貴的東西,而好奇心、思想方法、探索精神,特別是創新意識的培養統統丟掉了。我通過探索,認識到教學過程應該是這樣的:學生在教師設計的問題情景中,緊緊被問題吸引,自覺地、全身心地投入到學習活動中,用心思考,真誠交流,時而困惑,一時而高興,在跌宕起伏的情感體驗中,自主地完成對知識的構建。在這樣的學習過程中,學生不僅對知識理解十分深刻,而且"創造"著獲取知識的方法,體驗著獲取知識的愉悅。同時,在和諧誠懇的交流中,充分展示著自己的個性和才能。在這種認識的`基礎上,我們逐步推開了探索式、討論式的學習方法。具體從三個方面實施。
1、從學生和教學內容的實際出發,創造性地組織數學智力活動,讓學生在真實思考和創新的體驗中構建知識,學習方法,增長智慧。這里說的智力活動,就是為學生創設一種動手操作、獨立觀察、引起思考的實際活動,激起學生自主地鉆研和創新,經過群體的交流,完成對信息的加工過程,使知識變成學生自己的精神財富。
例如,在學習"圓的認識"的課堂上,教師給每個4人小組發了一套特別的畫圓工具——一個圖釘、一條短線繩、一個鉛筆頭,讓學生自己想辦法畫圓。由于用這套工具畫圓,看似簡單,但真正畫起來,一個人難以完成。就是合作,在運用圖釘、線繩和鉛筆頭的綜合操作的過程中還有許多小技巧,稍有不慎,就難以畫出一個理想的圓。正是因為在反復克服困難中才好不容易地畫出一個圓,它便增加了吸引力,從而深刻體驗了畫圓時各要素的作用。因此,學生在討論半徑、直徑的特點,以及圓心、半徑的作用時,學生們有感而發,有話可言,表現出異常的積極。再轉入學習用圓規畫圓時,才感到發自內心地需要,在教師的指導下,不停手地找規律,急切想掌握它。這樣的課不管對學生來講,還是對老師來講,都是一種樂趣,一種享受。
2、真正樹立學生是教學活動主體的思想。這句話作為一個口號來提是比較容易的,但真正落實在課堂上,并不是一件很容易的事。首先,教師必須轉變角色,真正從權威的講授者變為與學生共同探討問題的好朋友和引導者。我們經過了較長時間的實驗、摸索、總結,覺得要解決這個問題,應徹底改變傳統的課堂教學結構,建立起一套新的課堂教學結構。實驗班初步形成的教學思路是"問題情景——操作、探討、交流——總結、應用、拓寬"。經反復實踐,收到了較好的教學效果。例如,過去上復習課,老師系統整理知識,學生聽完后,完成一些相應的習題,總結一下,就算是復習告終了。復習課的改革多年來一直是一個難點。但在我們的實驗班上大改過去的上法,知識的脈絡由學生分小組獨立整理,練習題在教師的引導下互相設計,交流練習。
3、積極營造自然和諧的學習氛圍,讓學生敞開思想參與學習活動。學生樂意在游戲和活動中學知識,有著強烈的求知欲望。我提倡辦好三件事:一是保證學生在探討問題時,有寬松的氣氛,必要時,可以下位,可以重組小組,甚至大聲爭辯;二是理解學生,允許學生用自然的語言表達思想,交流意見;三是鼓勵學生大膽提出問題,發表與眾不同的見解。這樣就可以大大解放了學生,也大大解放了老師,課堂上呈現出一種積極的、向上的、自然的、和諧的新景象。 阿基米德說過:"給我一個支點,我就可以撬起地球。"那么,就讓我們給學生一個探究的天空,讓他們用"探究"這一支點去"撬起"整個知識王國吧!
初中數學活動總結 篇16
1過兩點有且只有一條直線2兩點之間線段最短3同角或等角的補角相等4同角或等角的余角相等
5過一點有且只有一條直線和已知直線垂直
6直線外一點與直線上各點連接的所有線段中,垂線段最短7平行公理經過直線外一點,有且只有一條直線與這條直線平行8如果兩條直線都和第三條直線平行,這兩條直線也互相平行15定理三角形兩邊的和大于第三邊16推論三角形兩邊的差小于第三邊
17三角形內角和定理三角形三個內角的和等于180°18推論1直角三角形的兩個銳角互余
19推論2三角形的一個外角等于和它不相鄰的兩個內角的和20推論3三角形的一個外角大于任何一個和它不相鄰的內角21全等三角形的對應邊、對應角相等
22邊角邊公理(SAS)有兩邊和它們的夾角對應相等的兩個三角形全等23角邊角公理(ASA)有兩角和它們的夾邊對應相等的兩個三角形全等24推論(AAS)有兩角和其中一角的對邊對應相等的兩個三角形全等25邊邊邊公理(SSS)有三邊對應相等的兩個三角形全等
26斜邊、直角邊公理(HL)有斜邊和一條直角邊對應相等的兩個直角三角形全等27定理1在角的平分線上的點到這個角的兩邊的距離相等28定理2到一個角的兩邊的距離相同的點,在這個角的平分線上29角的平分線是到角的兩邊距離相等的所有點的集合
30等腰三角形的性質定理等腰三角形的兩個底角相等(即等邊對等角)31推論1等腰三角形頂角的平分線平分底邊并且垂直于底邊32等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合33推論3等邊三角形的各角都相等,并且每一個角都等于60°
34等腰三角形的判定定理如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)
35推論1三個角都相等的三角形是等邊三角形36推論2有一個角等于60°的等腰三角形是等邊三角形
37在直角三角形中,如果一個銳角等于30°那么它所對的直角邊等于斜邊的一半38直角三角形斜邊上的中線等于斜邊上的一半
39定理線段垂直平分線上的點和這條線段兩個端點的距離相等
40逆定理和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上
41線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合42定理1關于某條直線對稱的兩個圖形是全等形
43定理2如果兩個圖形關于某直線對稱,那么對稱軸是對應點連線的垂直平分線44定理3兩個圖形關于某直線對稱,如果它們的對應線段或延長線相交,那么交點在對稱軸上
45逆定理如果兩個圖形的對應點連線被同一條直線垂直平分,那么這兩個圖形關于這條直線對稱
46勾股定理直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a2+b2=c2
47勾股定理的逆定理如果三角形的三邊長a、b、c有關系a2+b2=c2,那么這個三角形是直角三角形
48定理四邊形的內角和等于360°49四邊形的外角和等于360°
50多邊形內角和定理n邊形的內角的和等于(n-2)×180°51推論任意多邊的外角和等于360°
52平行四邊形性質定理1平行四邊形的對角相等53平行四邊形性質定理2平行四邊形的對邊相等54推論夾在兩條平行線間的平行線段相等
55平行四邊形性質定理3平行四邊形的對角線互相平分
56平行四邊形判定定理1兩組對角分別相等的四邊形是平行四邊形57平行四邊形判定定理2兩組對邊分別相等的四邊形是平行四邊形58平行四邊形判定定理3對角線互相平分的四邊形是平行四邊形59平行四邊形判定定理4一組對邊平行相等的四邊形是平行四邊形60矩形性質定理1矩形的四個角都是直角61矩形性質定理2矩形的對角線相等
62矩形判定定理1有三個角是直角的四邊形是矩形63矩形判定定理2對角線相等的平行四邊形是矩形64菱形性質定理1菱形的四條邊都相等
65菱形性質定理2菱形的對角線互相垂直,并且每一條對角線平分一組對角66菱形面積=對角線乘積的一半,即S=(a×b)÷267菱形判定定理1四邊都相等的四邊形是菱形68菱形判定定理2對角線互相垂直的平行四邊形是菱形69正方形性質定理1正方形的四個角都是直角,四條邊都相等
70正方形性質定理2正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角
71定理1關于中心對稱的兩個圖形是全等的
72定理2關于中心對稱的兩個圖形,對稱點連線都經過對稱中心,并且被對稱中心平分
73逆定理如果兩個圖形的對應點連線都經過某一點,并且被這一點平分,那么這兩個圖形關于這一點對稱
74等腰梯形性質定理等腰梯形在同一底上的兩個角相等75等腰梯形的兩條對角線相等
76等腰梯形判定定理在同一底上的兩個角相等的梯形是等腰梯形77對角線相等的梯形是等腰梯形
78平行線等分線段定理如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等
79推論1經過梯形一腰的中點與底平行的直線,必平分另一腰80推論2經過三角形一邊的中點與另一邊平行的直線,必平分第三邊81三角形中位線定理三角形的中位線平行于第三邊,并且等于它的一半82梯形中位線定理梯形的中位線平行于兩底,并且等于兩底和的一半
L=(a+b)÷2S=L×h
83(1)比例的基本性質如果a:b=c:d,那么ad=bc,如果ad=bc,那么a:b=c:d84(2)合比性質如果a/b=c/d,那么(a±b)/b=(c±d)/d85(3)等比性質如果a/b=c/d=…=m/n(b+d+…+n≠0),
那么(a+c+…+m)/(b+d+…+n)=a/b
86平行線分線段成比例定理三條平行線截兩條直線,所得的對應線段成比例
87推論平行于三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例88定理如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那么這條直線平行于三角形的第三邊
89平行于三角形的一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應成比例
90定理平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似
91相似三角形判定定理1兩角對應相等,兩三角形相似(ASA)92直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似93判定定理2兩邊對應成比例且夾角相等,兩三角形相似(SAS)94判定定理3三邊對應成比例,兩三角形相似(SSS)
95定理如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應成比例,那么這兩個直角三角形相似
96性質定理1相似三角形對應高的比,對應中線的比與對應角平分線的比都等于相似比97性質定理2相似三角形周長的比等于相似比98性質定理3相似三角形面積的比等于相似比的平方
99任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值100任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值
101圓是定點的距離等于定長的點的集合
102圓的內部可以看作是圓心的距離小于半徑的點的集合103圓的外部可以看作是圓心的距離大于半徑的點的集合104同圓或等圓的半徑相等
105到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓106和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直平分線107到已知角的兩邊距離相等的點的軌跡,是這個角的平分線
108到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線109定理不在同一直線上的三點確定一個圓。
110垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧
111推論1①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的.兩條弧
②弦的垂直平分線經過圓心,并且平分弦所對的兩條弧
③平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧
112推論2圓的兩條平行弦所夾的弧相等113圓是以圓心為對稱中心的中心對稱圖形
114定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等
115推論在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等
116定理一條弧所對的圓周角等于它所對的圓心角的一半
117推論1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等118推論2半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑119推論3如果三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形120定理圓的內接四邊形的對角互補,并且任何一個外角都等于它的內對角121①直線L和⊙O相交d<r②直線L和⊙O相切d=r③直線L和⊙O相離d>r122切線的判定定理經過半徑的外端并且垂直于這條半徑的直線是圓的切線123切線的性質定理圓的切線垂直于經過切點的半徑124推論1經過圓心且垂直于切線的直線必經過切點125推論2經過切點且垂直于切線的直線必經過圓心
126切線長定理從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角
127圓的外切四邊形的兩組對邊的和相等128弦切角定理弦切角等于它所夾的弧對的圓周角
129推論如果兩個弦切角所夾的弧相等,那么這兩個弦切角也相等130相交弦定理圓內的兩條相交弦,被交點分成的兩條線段長的積相等
131推論如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項132切割線定理從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的比例中項
133推論從圓外一點引圓的兩條割線,這一點到每條割線與圓的交點的兩條線段長的積相等
134如果兩個圓相切,那么切點一定在連心線上135①兩圓外離d>R+r
②兩圓外切d=R+r
③兩圓相交R-r<d<R+r(R>r)④兩圓內切d=R-r(R>r)⑤兩圓內含d<R-r(R>r)
136定理相交兩圓的連心線垂直平分兩圓的公共弦137定理把圓分成n(n≥3):
⑴依次連結各分點所得的多邊形是這個圓的內接正n邊形
⑵經過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形138定理任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓
(n2)180139正n邊形的每個內角都等于
n140定理正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形
pnrn141正n邊形的面積Sn=p表示正n邊形的周長
2142正三角形面積
32aa表示邊長4143如果在一個頂點周圍有k個正n邊形的角,由于這些角的和應為360°,
k(n2)180360化為(n-2)(k-2)=4因此
n144弧長計算公式:L=
nR180nR2LR145扇形面積公式:S扇形==
3602146內公切線長=d-(R-r)外公切線長=d-(R+r)
公式分類及公式表達式
乘法與因式分:a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)三角不等式:|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b-b≤a≤b|a-b|≥|a|-|b|-|a|≤a≤|a|
一元二次方程的解
bb24ac2a
根與系數的關系:X1+X2=-b/aX1*X2=c/a注:韋達定理判別式
b2-4ac=0注:方程有兩個相等的實根b2-4ac>0注:方程有兩個不等的實根b2-4ac
初中數學活動總結 篇17
三角函數關系
倒數關系
tanα·cotα=1
sinα·cscα=1
cosα·secα=1
商的關系
sinα/cosα=tanα=secα/cscα
cosα/sinα=cotα=cscα/secα
平方關系
sin^2(α)+cos^2(α)=1
1+tan^2(α)=sec^2(α)
1+cot^2(α)=csc^2(α)
同角三角函數關系六角形記憶法
構造以"上弦、中切、下割;左正、右余、中間1"的正六邊形為模型。
倒數關系
對角線上兩個函數互為倒數;
商數關系
六邊形任意一頂點上的函數值等于與它相鄰的兩個頂點上函數值的乘積。(主要是兩條虛線兩端的三角函數值的乘積,下面4個也存在這種關系。)。由此,可得商數關系式。
平方關系
在帶有陰影線的三角形中,上面兩個頂點上的三角函數值的平方和等于下面頂點上的三角函數值的平方。
銳角三角函數定義
銳角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的銳角三角函數。
正弦(sin)等于對邊比斜邊;sinA=a/c
余弦(cos)等于鄰邊比斜邊;cosA=b/c
正切(tan)等于對邊比鄰邊;tanA=a/b
余切(cot)等于鄰邊比對邊;cotA=b/a
正割(sec)等于斜邊比鄰邊;secA=c/b
余割(csc)等于斜邊比對邊。cscA=c/a
互余角的三角函數間的關系
sin(90°-α)=cosα,cos(90°-α)=sinα,
tan(90°-α)=cotα,cot(90°-α)=tanα.
平方關系:
sin^2(α)+cos^2(α)=1
tan^2(α)+1=sec^2(α)
cot^2(α)+1=csc^2(α)
積的關系:
sinα=tanα·cosα
cosα=cotα·sinα
tanα=sinα·secα
cotα=cosα·cscα
secα=tanα·cscα
cscα=secα·cotα
倒數關系:
tanα·cotα=1
sinα·cscα=1
cosα·secα=1
中考數學知識點
1、反比例函數的概念
一般地,函數(k是常數,k0)叫做反比例函數。反比例函數的解析式也可以寫成的形式。自變量x的取值范圍是x0的一切實數,函數的取值范圍也是一切非零實數。
2、反比例函數的圖像
反比例函數的圖像是雙曲線,它有兩個分支,這兩個分支分別位于第一、三象限,或第二、四象限,它們關于原點對稱。由于反比例函數中自變量x0,函數y0,所以,它的圖像與x軸、y軸都沒有交點,即雙曲線的兩個分支無限接近坐標軸,但永遠達不到坐標軸。
3、反比例函數的性質
反比例函數k的符號k>0k<0圖像yO xyO x性質①x的取值范圍是x0,y的取值范圍是y0;
②當k>0時,函數圖像的兩個分支分別
在第一、三象限。在每個象限內,y隨x 的增大而減小。
①x的取值范圍是x0,y的取值范圍是y0;
②當k<0時,函數圖像的兩個分支分別在第二、四象限。在每個象限內,y隨x 的增大而增大。
4、反比例函數解析式的確定
確定及誒是的方法仍是待定系數法。由于在反比例函數中,只有一個待定系數,因此只需要一對對應值或圖像上的一個點的坐標,即可求出k的值,從而確定其解析式。
5、反比例函數的幾何意義
設是反比例函數圖象上任一點,過點P作軸、軸的垂線,垂足為A,則
(1)△OPA的面積.
(2)矩形OAPB的面積。這就是系數的幾何意義.并且無論P怎樣移動,△OPA的面積和矩形OAPB的面積都保持不變。
矩形PCEF面積=,平行四邊形PDEA面積=
初中數學活動總結 篇18
作為一名初中數學教研組組長,我肩負著整個學科的發展方向。在本學期開始時,我制定了數學教研計劃,以確保數學教學和教研工作能夠順利進行。由于今年初中部的教學班級增多,教學任務也加重了。作為一門主學科,數學的教學責任重大。因此,我們堅定不移地深化了 “杜郎口”和“洋思”教學改革,并將每周的周一下午第一節課定為固定的數學教研時間。在教研活動中,我們對各年級的本周教學內容及重點難點進行了把關,并對各種公開課和教研活動進行了集體教研和通告。我們努力完成各種教學任務,確保數學教學工作不會拖累學校的其他工作,并有效地避免了教學事故的發生。
本學期,由于初一數學課本及教學內容發生了較大變化,并且有兩位新聘任的教師加入我們的團隊。因此,我們將初一的教學內容作為本學期數學教研的重點。我們對這兩位教師進行了長期的追蹤聽課和指導,共聽評課20余節。這使得兩位教師都取得了長足的進步,他們的教學成績也得到了顯著提高。在期末考試中,初一的一、二兩個班的數學成績取得了較好的成績,而三、四兩個班的成績仍需加強。除此之外,其他年級的數學成績也都取得了優異的成績。
作為一班的班主任,我肩負著今年中考的.重任以及學校的期望。由于這一屆學生是我剛接手的班級,我對學生的情況并不熟悉。因此,我在學期初花了大約一個月的時間,逐步了解、認識和熟悉了全班學生。接下來,我進行了一系列改革。首先,我精心挑選了班級干部,并鼓勵他們在班級中開展工作。同時,我加強了對他們的指導,讓他們盡快成熟,有力地進行班級管理。當班級干部逐漸成熟時,我們實行了議會制管理,并對班級內的事物進行了量化管理。此外,我對教師的教學進行了可行性分析,以確保教學能夠有利于師生的發展。我們還每月舉行一次選舉,讓有責任心的同學有更大的發展空間。
開展好主題班會是我們的另一個重點工作。作為初四學生,學習是最重要的。在主題班會中,我們注重加強對科學用腦的思想教育,以及對學生個人心理調適、科學休息法、記憶法、科學身體鍛煉、營養搭配和科學用腦的最新成果等方面的指導。我們的工作都以真正有利于學生學習為主,力爭在明年的中考中取得較理想的成績。
初中數學活動總結 篇19
1 過兩點有且只有一條直線
2 兩點之間線段最短
3 同角或等角的補角相等
4 同角或等角的余角相等
5 過一點有且只有一條直線和已知直線垂直
6 直線外一點與直線上各點連接的所有線段中,垂線段最短
7 平行公理 經過直線外一點,有且只有一條直線與這條直線平行
8 如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9 同位角相等,兩直線平行
10 內錯角相等,兩直線平行
11 同旁內角互補,兩直線平行
12兩直線平行,同位角相等
13 兩直線平行,內錯角相等
14 兩直線平行,同旁內角互補
15 定理 三角形兩邊的和大于第三邊
16 推論 三角形兩邊的差小于第三邊
17 三角形內角和定理 三角形三個內角的和等于180
18 推論1 直角三角形的兩個銳角互余
19 推論2 三角形的一個外角等于和它不相鄰的兩個內角的和
20 推論3 三角形的一個外角大于任何一個和它不相鄰的內角
初中數學活動總結 篇20
1、正數和負數的有關概念
(1)正數:比0大的數叫做正數;
負數:比0小的數叫做負數;
0既不是正數,也不是負數。
(2)正數和負數表示相反意義的量。
2、有理數的概念及分類
3、有關數軸
(1)數軸的三要素:原點、正方向、單位長度。數軸是一條直線。
(2)所有有理數都可以用數軸上的點來表示,但數軸上的點不一定都是有理數。
(3)數軸上,右邊的數總比左邊的數大;表示正數的點在原點的右側,表示負數的點在原點的左側。
(2)相反數:符號不同、絕對值相等的兩個數互為相反數。
若a、b互為相反數,則a+b=0;
相反數是本身的是0,正數的相反數是負數,負數的相反數是正數。
(3)絕對值最小的數是0;絕對值是本身的數是非負數。
4、任何數的絕對值是非負數。
最小的正整數是1,最大的負整數是-1。
5、利用絕對值比較大小
兩個正數比較:絕對值大的那個數大;
兩個負數比較:先算出它們的絕對值,絕對值大的反而小。
6、有理數加法
(1)符號相同的兩數相加:和的符號與兩個加數的符號一致,和的絕對值等于兩個加數絕對值之和.
(2)符號相反的兩數相加:當兩個加數絕對值不等時,和的符號與絕對值較大的加數的符號相同,和的絕對值等于加數中較大的絕對值減去較小的絕對值;當兩個加數絕對值相等時,兩個加數互為相反數,和為零.
(3)一個數同零相加,仍得這個數.
加法的交換律:a+b=b+a
加法的結合律:(a+b)+c=a+(b+c)
7、有理數減法:減去一個數,等于加上這個數的相反數。
8、在把有理數加減混合運算統一為最簡的形式,負數前面的加號可以省略不寫.
例如:14+12+(-25)+(-17)可以寫成省略括號的形式:14+12-25-17,可以讀作“正14加12減25減17”,也可以讀作“正14、正12、負25、負17的和.”
9、有理數的乘法
兩個數相乘,同號得正,異號得負,再把絕對值相乘;任何數與0相乘都得0。
第一步:確定積的符號第二步:絕對值相乘
10、乘積的符號的確定
幾個有理數相乘,因數都不為0時,積的符號由負因數的個數確定:當負因數有奇數個時,積為負;
當負因數有偶數個時,積為正。幾個有理數相乘,有一個因數為零,積就為零。
11、倒數:乘積為1的兩個數互為倒數,0沒有倒數。
正數的倒數是正數,負數的倒數是負數。(互為倒數的兩個數符號一定相同)
倒數是本身的只有1和-1。
初中數學活動總結 篇21
尊敬的校領導、各位家長、親愛的同學們:
大家好!我是某初中的數學老師,在這里,我要向大家匯報本年度的工作和成果。
一、年度教學工作
本年度,我主要備課和授課目標是:根據教學計劃和教科書,積極探索教學內容和教學方法的革新,將傳統的數學教學方法與現代教學理念相結合,讓學生在掌握基本知識的基礎上,注重啟發思維、提高學生的數學素養和創新能力。
通過授課,我致力于:借助教具、PPT等,生動形象地呈現數學知識點,使學生不僅對學習的內容感到好奇,而且容易理解和掌握;讓學生多動手、多思考、多交流,以此激發學生學習的興趣和積極性;在每個學科中,開展一些探究活動、案例分析和課程設計,這些活動可以加深學生對某些概念和原理的理解和認識,提高學生分析和解決實際問題的能力。
二、師德師風
在教學工作中,我時刻知道自己是學生心中的榜樣,所以在日常教學中,我把嚴謹和責任融合在一起,全身心地投入到教學中,對所有學生一視同仁、真心關愛每一個孩子,尊重學生、傾聽學生、賞識學生,從而促進學生全面發展;同時,注重與同事交流、借鑒,互相支持、幫助,達到更高更優秀的教學水平,傳遞正能量。
三、學生情況
在教學過程中,我更注重學生情況的關注,每次授課之前,認真閱讀學生檔案和心理狀況,了解每個學生的特點和學習狀況,進行差別化教學,注重培養每個學生的特長和優點,從而達到全面發展。
四、學科競賽
本學年度,在我帶領下,參加了多項校級和市級數學競賽,我充分發揮優秀的教學技巧和團隊合作精神,引導和輔導學生,在教學工作之余,指導學生參與各項數學競賽,取得了很好的`成績。
五、教學創新研究
本學年度,我積極參加各類學科活動,不斷探索和研究教學創新,深入了解各個年級的教學重點和難點,針對不同學情和需求,設計出更好的教學方案和方法,不斷追求教學質量的提高,促進學生的全面發展。
六、總結
在本年度的工作中,我充分認識到自己的不足,深入了解了學生的學情和心理,通過各種措施實現了教育教學的全面發展,同時也積累了更多的教學經驗,我相信,在以后的工作中,我會不斷地總結和反思不足的地方,不斷改進自己的工作方式和效率,更好地為學生服務。
最后,衷心感謝家長、學校和同事們在工作中給予的支持和信任,讓我更加努力地工作,為學生的全面發展貢獻自己的力量。
初中數學活動總結 篇22
參加初中數學遠程培訓二個多月時間了,通過這段培訓,我受益匪淺,感受很多。下面就是我的.點滴體會:
一.對新教材有了初步了解
學習了義務教育新課標的理念和課例解讀后,我對于未曾變動的舊的知識點,考綱上有所變化的做到了心中有數。對于新增內容,哪些是中考必考內容,哪些是選講內容,對于不同的內容應該分別講解到什么程度,也更明確了。這樣才能做到面對新教材中的新內容不急不躁、從容不迫,不至于面對新問題產生陌生感和緊張感。通過學習,使我清楚地認識到初中數學新課程的內容是由哪些模塊組成的,各模塊又是由哪些知識點組成的,以及各知識點之間又有怎樣的聯系與區別。專家們所提供的專業分析對我們理解教材,把握教材有著非常重要而又深遠的意義。對于必修課程必須講深講透,對于部分選學內容,應視學校和學生的具體情況而定。
二.對課堂教學設計、教學案例的編寫方面的內容有了提高。
培訓活動中,自己通過視頻觀看學習了“案例導入”、“專家講座”、“互動討論”、“課例作業”等內容,使自己在教學設計、教學案例以及課堂教學等方面有了進一步的提升和加強,特別是在課堂教學設計,令人豁然開朗。通過視頻觀看學習了《有序數對》和《圖形的旋轉》,感覺很有收獲。如以往聽課從未記錄過講課者教學過程各個環節的時間分配,聽課時只注意了講課者的知識傳授情況,而沒注意欣賞、品析講課者的教學追求、洞察其教學的理論依據等。特別是聽了專家講座后,自己才知道還有很多不足。自己今后將認真按專家的指點開展教學活動。
三、教學實戰能力得到加強
本次培訓充分關注培訓教師的實際需要,不僅傳授了現代教學技術和手段,在大的緯度上幫助教師構建理論體系,同時更關注新課程背景下課堂教學深層問題。專家向我們講授了“計算機教學手段應用”“中學教師標準解讀”“教學技術及應用”“新課標解讀”等,先進的教學理念及其別具一格的教學風格使本人在觀摩、思考、碰撞中得到提高。整個培訓活動從實際到理論,再由理論到實際,循序漸進,降低了學習的難度,提高了學習的實效。
四、通過培訓學習,使我清楚地認識到整體把握初中數學新課程的重要性及其常用方法。
整體把握初中數學新課程不僅可以使我們清楚地認識到初中數學的主要脈絡,而且可以使我們站在更高層次上面對初中數學新課程。整體把握初中數學新課程不僅可以提高教師自身的素質,也有助于培養學生的數學素養。只有讓學生具備良好的數學素養才能使他們更好地適應社會的發展與進步。與學生的總結、交流能促進我們產生更多更好的授課方式、方法,產生更多更新的科學思維模式。這對于我們提高課堂教學質量具有非常現實而深遠的意義。
總之,此次培訓活動,使自己的教育教學觀念、教學行為方法、專業化水平,教育教學理論均有了很大的提升。今后,自己充分將所學、所悟、所感的內容應用到教學實踐中去,做新時期的合格的初中數學教師。
初中數學活動總結 篇23
通過培訓的學習,使我認識到當前課改的目的和意義,也使自己對課改有了深刻的認識,也大大提高了自己對本學科的理論素養。現將這次培訓體會總結如下:
一、業務學習
加強學習,提高思想認識,樹立新的理念。堅持每周的政治學習和業務學習,緊緊圍繞學習新課程,構建新課程,嘗試新教法的目標,不斷更新教學觀念。注重把學習新課程標準與構建新理念有機的結合起來。通過學習新的《課程標準》,認識到新課程改革既是挑戰,又是機遇。將理論聯系到實際教學工作中,解放思想,更新觀念,豐富知識,提高能力,以全新的素質結構接受新一輪課程改革浪潮的“洗禮”。
二、新課改
通過學習新的《課程標準》,使自己逐步領會到“一切為了人的發展”的教學理念。樹立
了學生主體觀,貫徹了民主教學的思想,構建了一種民主和諧平等的新型師生關系,使尊重學生人格,尊重學生觀點,承認學生個性差異,積極創造和提供滿足不同學生學習成長條件的理念落到實處。將學生的發展作為教學活動的出發點和歸宿。重視了學生獨立性,自主性的培養與發揮,收到了良好的效果。
三、教學研究
教學工作是學校各項工作的中心,也是檢驗一個教師工作成敗的關鍵。一學期來,在堅持抓好新課程理念學習和應用的同時,我積極探索教育教學規律,充分運用學校現有的.教育教學資源,大膽改革課堂教學,加大新型教學方法使用力度,取得了明顯效果,具體表現在:
(一)發揮教師為主導的作用
1 、備課深入細致。平時認真研究教材,多方參閱各種資料,力求深入理解教材,準確把握難重點。在制定教學目的時,非常注意學生的實際情況。教案編寫認真,并不斷歸納總結經驗教訓。
2 、注重課堂教學效果。針對初三年級學生特點,以愉快式教學為主,不搞滿堂灌,堅持學生為主體,教師為主導、教學為主線,注重講練結合。在教學中注意抓住重點,突破難點。
3 、堅持參加校內外教學研討活動,不斷汲取他人的寶貴經驗,提高自己的教學水平。經常向經驗豐富的教師請教并經常在一起討論教學問題。聽公開課多次,自己執教二節公開課,尤其本學期,自己執教的公開課,學校領導和教師們給我提出了不少寶貴的建議,使我明確了今后講課的方向和以后數學課該怎么教和怎么講。
4 、在作業批改上,認真及時,力求做到全批全改,重在訂正,及時了解學生的學習情況,以便在輔導中做到有的放矢。
四、工作中存在的問題
1 、教材挖掘不深入。
2 、教法不靈活,不能吸引學生學習,對學生的引導、啟發不足。
3 、新課標下新的教學思想學習不深入。對學生的自主學習,合作學習,缺乏理論指導。
4 、差生末抓在手。由于對學生的了解不夠,對學生的學習態度、思維能力不太清楚。上課和復習時該講的都講了,學生掌握的情況怎樣,教師心中無數。導致了教學中的盲目性。 5 、教學反思不夠。
五、今后努力的方向
1 、加強學習,學習新課標下新的教學思想。
2 、學習新課標,挖掘教材,進一步把握知識點和考點。
3 、多聽課,學習同科目教師先進的教學方法的教學理念。
4 、加強轉差培優力度。
5 、加強教學反思,加大教學投入。
初中數學活動總結 篇24
一、學情分析的目標:
(1)進一步培養良好的數學行為習慣和學習習慣。
(2)加強學風建設,培養學習數學的興趣,明確學習任務,注重學法指導,提高學習效率。
(3)培養學生獲得知識和技能,培養觀察和分析推理的能力,培養學生實事求是,嚴肅認真的科學態度和學習方法。
二、學情分析的內容:
主要包括學生學習起點狀態的分析、學生潛在狀態的分析兩部分。學生起點狀態的分析主要從三個維度展開:知識維度,指學生的認知基礎;技能維度,指學生已有的學習能力;素質維度,指學生的學習態度、學習習慣、意志品質……學生潛在狀態的分析,主要指學生可能發生的狀況與可能的發展。下面我就初中數學課作學情分析,敬請各位老師斧正。
在我的數學教學中,我認為學生的數學基礎影響學生的學習興趣,九年級任務重,學習進度快,兩級分化嚴重,學生學習主動性不夠,學生學習習慣有待提高。學生除了需要學習數學,還要學習其它科目,時間有限,需要我們教師教會學生解題方法以提高速度。
三、學情分析的方法:
1.學生的熱點問題要善于剖析
我們捕捉到的來自學生中間的信息,可能非常凌亂,成因也可能會很復雜,與數學教學的聯系或許未必緊密,不可能把捕捉到的所有信息簡單地堆砌到課堂教學中去。這就需要教師學會用實事求是的觀點、方法,耐心分析、遴選出與思想數學結合最緊密、最有代表性的學生熱點。分清哪些是積極的、哪些是消極的
2.用心捕捉學生熱點問題
學生在為人處事的生活實踐中,常常會對某一事物或某一問題表現出極大的關注和傾向,這種關注點和傾向性構成了學生的熱點,成為把脈學情的捷徑。數學課是一門思維較強的課程,準確把握學生學習中的熱點問題,有助于增強教學的實效性和針對性。
做好學生的思想工作,闡明中考競爭的嚴峻形勢,讓學生有憂患意識,從而調動學習的積極性。多與各科教師聯系,及時了解學生動態,接受科任老師的建議。多與家長交流,形成合力,共同督促學生學習,使其進步。學生進行深刻的自我反思,對自己的學習提出具體的要求,促成每個學生形成適合自己的良好學習方法。
初中數學活動總結 篇25
圓周角知識點
1、定義:頂點在圓上,角的兩邊都與圓相交的角。(兩條件缺一不可)
2、定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半。
3、推論:
1)在同圓或等圓中,相等的圓周角所對的弧相等。
2)直徑(半圓)所對的圓周角是直角;900的圓周角所對的弦為直徑。(①常見輔助線:有直徑可構成直角,有900圓周角可構成直徑;②找圓心的方法:作兩個900圓周角所對兩弦交點)
4、圓內接四邊形的性質定理:圓內接四邊形的對角互補。(任意一個外角等于它的內對角)
補充:
1、兩條平行弦所夾的弧相等。
2、圓的兩條弦1)在圓外相交時,所夾角等于它所對的兩條弧度數差的一半。2)在圓內相交時,所夾的角等于它所夾兩條弧度數和的一半。
3、同弧所對的(在弧的同側)圓內部角其次是圓周角,最小的是圓外角。
平均數中位數與眾數知識點
1、數據13,10,12,8,7的平均數是10
2、數據3,4,2,4,4的眾數是4
3、數據1,2,3,4,5的中位數是3
有理數知識點
1、大于0的數叫做正數。
2、在正數前面加上負號“-”的數叫做負數。
3、整數和分數統稱為有理數。
4、人們通常用一條直線上的點表示數,這條直線叫做數軸。
5、在直線上任取一個點表示數0,這個點叫做原點。
6、一般的,數軸上表示數a的點與原點的距離叫做數a的絕對值。
7、由絕對值的定義可知:
一個正數的絕對值是它本身;
一個負數的絕對值是它的相反數;
0的絕對值是0。
8、正數大于0,0大于負數,正數大于負數。
9、兩個負數,絕對值大的反而小。
10、有理數加法法則:
(1)同號兩數相加,取相同的符號,并把絕對值相加。
(2)絕對值不相等的異號兩數相加,取絕對值較大的加數的負號,并用較大的絕對值減去較小的絕對值,互為相反數的兩個數相加得0。
(3)一個數同0相加,仍得這個數。
11、有理數的加法中,兩個數相加,交換交換加數的位置,和不變。
12、有理數的加法中,三個數相加,先把前兩個數相加,或者先把后兩個數相加,和不變。
13、有理數減法法則:減去一個數,等于加上這個數的相反數。
14、有理數乘法法則:兩數相乘,同號得正,異號得負,并把絕對值向乘。任何數同0相乘,都得0。
15、有理數中仍然有:乘積是1的兩個數互為倒數。
16、一般的,有理數乘法中,兩個數相乘,交換因數的位置,積相等。
17、三個數相乘,先把前兩個數相乘,或者先把后兩個數相乘,積相等。
18、一般地,一個數同兩個數的和相乘,等于把這個數分別同這兩個數相乘,再把積相加。
19、有理數除法法則:除以一個不等于0的數,等于乘這個數的倒數。
20、兩數相除,同號得正,異號得負,并把絕對值相除。0除以任何一個不等于0的數,都得0。
初中數學活動總結 篇26
平方根表示法:
一個非負數a的平方根記作,讀作正負根號a。a叫被開方數。
中被開方數的取值范圍:
被開方數a≥0
平方根性質:
①一個正數的平方根有兩個,它們互為相反數。
②0的平方根是它本身0。
③負數沒有平方根開平方;求一個數的平方根的運算,叫做開平方。
平方根與算術平方根區別:
1、定義不同。
2表示方法不同。
3、個數不同。
4、取值范圍不同。
聯系:
1、二者之間存在著從屬關系。
2、存在條件相同。
3、0的算術平方根與平方根都是0
含根號式子的意義:表示a的平方根,表示a的算術平方根,表示a的負的平方根。
求正數a的算術平方根的方法;
完全平方數類型:
①想誰的平方是數a。
②所以a的平方根是多少。
③用式子表示。
求正數a的算術平方根,只需找出平方后等于a的正數。
初中數學活動總結 篇27
一直以來,在試卷講評課的上法上總存在著一些困惑。例如,試卷上的錯題因人而異,如何上能照顧到全體,將每位學生出錯的問題解決?通過這次培訓我認識到,我們沒有足夠的時間面面俱到的講解,在一定的時間內想面面俱到,那么每個題目也只是蜻蜓點水,一節課下來真正沉淀到頭腦中的知識寥寥無幾。今后的試卷講評課我打算按照下面的思路來上,請劉老師多批評指正。
一、考試之后教師要做好測試分析,并充分備課。
通過測試分析,首先,弄清學生集中出錯的題目,找出學生的共性問題,并針對這些共性的問題展開備課。備課要備學生出錯的原因,試卷講評時如何對這些問題講解與完善。其次,弄清每位學生的得分,對于成績波動大的同學通過談話等方式及時了解情況并幫助解決困難。
二、下發試卷,學生自己糾錯。
給學生自己糾錯的機會,將能自己改正或通過小組合作改正的題目在試卷講評前改過來。
三、訂正答案,進一步改錯。
給學生標準答案,在答案的引導下,學生進一步尋找解題思路,完善解題步驟,查找丟分原因,加深對知識的理解。
四、重點題、錯題重點講解。
經過兩輪的改錯之后學生存留下的問題已經很少,教師試卷講評時就要解決這些遺留問題、重點題、錯題。對于這些問題可以通過分類講解、同類知識串講、變式訓練、一題多解、多個知識點上串下聯等方式講透。經過尋根問底,可使學生對不明確的知識點加深理解,再認識,然后鞏固練習。這個過程下來同時可復習到多個知識點,建立知識體系,拓展學生思維。
五、方法總結。
圍繞一個知識點講解之后,要讓學生總結解題思想、方法,掌握答題技巧。需要時可讓學生簡記。
六、解答疑問。
通過學生提出疑問,大家共同解答,完善學生對知識的認識。近幾年教基礎年級,所以感覺上章節復習課較多,專題復習課很少。我們學校的章節復習課與劉老師的“出示問題,引出知識”是一致的。通過問題的解決實現知識點的復習。
初中數學活動總結 篇28
知識點總結
1.定義:兩組對邊分別平行的四邊形叫平行四邊形
2.平行四邊形的性質
(1)平行四邊形的對邊平行且相等;
(2)平行四邊形的鄰角互補,對角相等;
(3)平行四邊形的對角線互相平分;
3.平行四邊形的判定
平行四邊形是幾何中一個重要內容,如何根據平行四邊形的性質,判定一個四邊形是平行四邊形是個重點,下面就對平行四邊形的五種判定方法,進行劃分:
第一類:與四邊形的對邊有關
(1)兩組對邊分別平行的四邊形是平行四邊形;
(2)兩組對邊分別相等的四邊形是平行四邊形;
(3)一組對邊平行且相等的四邊形是平行四邊形;
第二類:與四邊形的對角有關
(4)兩組對角分別相等的'四邊形是平行四邊形;
第三類:與四邊形的對角線有關
(5)對角線互相平分的四邊形是平行四邊形
常見考法
(1)利用平行四邊形的性質,求角度、線段長、周長;
(2)求平行四邊形某邊的取值范圍;
(3)考查一些綜合計算問題;
(4)利用平行四邊形性質證明角相等、線段相等和直線平行;
(5)利用判定定理證明四邊形是平行四邊形。
誤區提醒
(1)平行四邊形的性質較多,易把對角線互相平分,錯記成對角線相等;
(2)“一組對邊平行且相等的四邊形是平行四邊形”錯記成“一組對邊平行,一組對邊相等的四邊形是平行四邊形”后者不是平行四邊形的判定定理,它只是個等腰梯形。
初中數學活動總結 篇29
平面直角坐標系
平面直角坐標系:在平面內畫兩條互相垂直、原點重合的數軸,組成平面直角坐標系。
水平的數軸稱為x軸或橫軸,豎直的數軸稱為y軸或縱軸,兩坐標軸的交點為平面直角坐標系的原點。
平面直角坐標系的要素:
①在同一平面
②兩條數軸
③互相垂直
④原點重合
三個規定:
①正方向的規定橫軸取向右為正方向,縱軸取向上為正方向。
②單位長度的規定;一般情況,橫軸、縱軸單位長度相同;實際有時也可不同,但同一數軸上必須相同。
③象限的規定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。
相信上面對平面直角坐標系知識的講解學習,同學們已經能很好的掌握了吧,希望同學們都能考試成功。
初中數學知識點:平面直角坐標系的構成。
對于平面直角坐標系的構成內容,下面我們一起來學習哦。
平面直角坐標系的構成。
在同一個平面上互相垂直且有公共原點的兩條數軸構成平面直角坐標系,簡稱為直角坐標系。通常,兩條數軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數軸的正方向。水平的數軸叫做X軸或橫軸,鉛直的數軸叫做Y軸或縱軸,X軸或Y軸統稱為坐標軸,它們的公共原點O稱為直角坐標系的原點。
初中數學活動總結 篇30
列出方程(組)解應用題的一般步驟是:
1審題:弄清題意和題目中的已知數、未知數;
2找等量關系:找出能夠表示應用題全部含義的一個(或幾個)相等關系;3設未知數:據找出的相等關系選擇直接或間接設置未知數4列方程(組):根據確立的等量關系列出方程5解方程(或方程組),求出未知數的值;6檢驗:針對結果進行必要的檢驗;
7作答:包括單位名稱在內進行完整的答語。
一,行程問題
基本概念:行程問題是研究物體運動的,它研究的'是物體速度、時間、行程三者之間的關系。基本公式路程=速度×時間;路程÷時間=速度;路程÷速度=時間關鍵問題:確定行程過程中的位置.相遇問題:速度和×相遇時間=相遇路程
追擊問題:追擊時間=路程差÷速度差流水問題:順水行程=(船速+水速)×順水時間逆水行程=(船速-水速)×逆水時間順水速度=船速+水速逆水速度=船速-水速
靜水速度=(順水速度+逆水速度)÷2水速=(順水速度-逆水速度)÷2
二、利潤問題
現價=原價*折扣率
折扣價=現價/原價*100%
每件商品的利潤=售價-進貨價=利潤率*進價毛利潤=銷售額-費用
利潤率=(售價--進價)/進價*100%標價=售價=現價進價=售價-利潤售價=利潤+進價
三、計算利息的基本公式
儲蓄存款利息計算的基本公式為:利息=本金×存期×利率
稅率=應納數額/總收入*100%
本息和=本金+利息
稅后利息=本金*存期*利率*(1-稅率)稅后利息=利息*稅率
利率-利息/存期/本金/*100%利率的換算:
年利率、月利率、日利率三者的換算關系是:年利率=月利率×12(月)=日利率×360(天);月利率=年利率÷12(月)=日利率×30(天);日利率=年利率÷360(天)=月利率÷30(天)。使用利率要注意與存期相一致。利潤與折扣問題的公式利潤=售出價-成本
利潤率=利潤÷成本×100%=(售出價÷成本-1)×100%漲跌金額=本金×漲跌百分比
折扣=實際售價÷原售價×100%(折扣<1)利息=本金×利率×時間稅后利息=本金×利率×時間×(1-20%)
四、濃度問題
溶質的重量+溶劑的重量=溶液的重量溶質的重量÷溶液的重量×100%=濃度溶液的重量×濃度=溶質的重量溶質的重量÷濃度=溶液的重量
五、增長率問題
若平均增長(下降)數百分率為x,增長(或下降)前的是a,增長(或下降)n次后的量是b,則它們的數量關系可表示為:a(1+x)n=b或a(1-x)=bn
六、工程問題
工作效率=總工作量/工作時間工作時間=總工作量/工作效率
七、賽事,票價問題
賽事
單循環賽:n(n-1)/2
淘汰賽:n個球隊,比賽場數為n-1場次票價則對應的不一樣的賽制乘以對應的單價。
初中數學活動總結 篇31
1.不在同一直線上的三點確定一個圓
2.垂徑定理 垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧
推論1 ①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧
②弦的垂直平分線經過圓心,并且平分弦所對的兩條弧
③平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧
推論2 圓的兩條平行弦所夾的弧相等
3.圓是以圓心為對稱中心的中心對稱圖形
4.圓是定點的距離等于定長的點的集合
5.圓的內部可以看作是圓心的距離小于半徑的點的集合
6.圓的外部可以看作是圓心的距離大于半徑的點的集合
7.同圓或等圓的半徑相等
8.到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓
9.定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦 相等,所對的弦的弦心距相等
10.推論在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩 弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等。
11.定理圓的內接四邊形的對角互補,并且任何一個外角都等于它 的內對角
12. ①直線L和⊙O相交 d
②直線L和⊙O相切 d=r
③直線L和⊙O相離 d>r
13.切線的判定定理經過半徑的外端并且垂直于這條半徑的直線是圓的切線
14.切線的性質定理圓的切線垂直于經過切點的半徑
15.推論1經過圓心且垂直于切線的直線必經過切點
16.推論2經過切點且垂直于切線的直線必經過圓心
17.切線長定理從圓外一點引圓的兩條切線,它們的切線長相等, 圓心和這一點的連線平分兩條切線的夾角
18.圓的外切四邊形的兩組對邊的和相等外角等于內對角
19.如果兩個圓相切,那么切點一定在連心線上
20. ①兩圓外離 d>R+r
②兩圓外切 d=R+r
③兩圓相交 R-rr)
④兩圓內切 d=R-r(R>r) ⑤兩圓內含dr)
21.定理相交兩圓的連心線垂直平分兩圓的公共弦
22.定理把圓分成n(n≥3):
⑴依次連結各分點所得的多邊形是這個圓的.內接正n邊形
⑵經過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形
23.定理任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓
24.正n邊形的每個內角都等于(n-2)×180°/n
25.定理正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形
26.正n邊形的面積Sn=pnrn/2 p表示正n邊形的周長
27.正三角形面積√3a/4 a表示邊長
28.如果在一個頂點周圍有k個正n邊形的角,由于這些角的和應為 360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4
29.弧長計算公式:L=n兀R/180
30.扇形面積公式:S扇形=n兀R^2/360=LR/2
31.內公切線長= d-(R-r) 外公切線長= d-(R+r)
32.定理 一條弧所對的圓周角等于它所對的圓心角的一半
33.推論1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等
34.推論2半圓(或直徑)所對的圓周角是直角;90°的圓周角所 對的弦是直徑
35.弧長公式 l=a*r a是圓心角的弧度數r >0 扇形面積公式 s=1/2*l*r
初中數學活動總結 篇32
一元一次方程定義
通過化簡,只含有一個未知數,且含有未知數的最高次項的次數是一的等式,叫一元一次方程。通常形式是ax+b=0(a,b為常數,且a≠0)。一元一次方程屬于整式方程,即方程兩邊都是整式。
一元指方程僅含有一個未知數,一次指未知數的次數為1,且未知數的系數不為0。我們將ax+b=0(其中x是未知數,a、b是已知數,并且a≠0)叫一元一次方程的標準形式。這里a是未知數的系數,b是常數,x的次數必須是1。
即一元一次方程必須同時滿足4個條件:⑴它是等式;⑵分母中不含有未知數;⑶未知數最高次項為1;⑷含未知數的項的系數不為0。
一元一次方程的五個核心問題
一、什么是等式?1+1=1是等式嗎?
表示相等關系的式子叫做等式,等式可分三類:第一類是恒等式,就是用任何允許的數值代替等式中的字母,等式的兩邊總是相等,由數字組成的等式也是恒等式,如2+4=6,a+b=b+a等都是恒等式;第二類是條件等式,也就是方程,這類等式只能取某些數值代替等式中的字母時,等式才成立,如x+y=-5,x+4=7等都是條件等式;第三類是矛盾等式,就是無論用任何值代替等式中的字母,等式總不成立,如x2=-2,|a|+5=0等。
一個等式中,如果等號多于一個,叫做連等式,連等式可以化為一組只含有一個等號的等式。
等式與代數式不同,等式中含有等號,代數式中不含等號。
等式有兩個重要性質1)等式的兩邊都加上或減去同一個數或同一個整式,所得結果仍然是一個等式;(2)等式的兩邊都乘以或除以同一個數除數不為零,所得結果仍然是一個等式。
二、什么是方程,什么是一元一次方程?
含有未知數的等式叫做方程,如2x-3=8,x+y=7等。判斷一個式子是否是方程,只需看兩點:一是不是等式;二是否含有未知數,兩者缺一不可。
只含有一個未知數,并且含未知數的式子都是整式,未知數的次數是1,系數不是0的方程叫做一元一次方程。其標準形式是ax+b=0(a不為0,a,b是已知數),值得注意的是1)一個整式方程的"元"和"次"是將這個方程化成最簡形式后才能判定的。如方程2y2+6=3x+2y2,形式上是二元二次方程,但化簡后,它實際上是一個一元一次方程。(2)整式方程分母中不含有未知數。判斷是否為整式方程,是不能先將它化簡的如方程x+1/x=2+1/x,因為它的分母中含有未知數x,所以,它不是整式方程。如果將上面的方程進行化簡,則為x=2,這時再去作判斷,將得到錯誤的結論。
凡是談到次數的方程,都是指整式方程,即方程的兩邊都是整式。一元一次方程是整式方程中元數最少且次數最低的方程。
三、等式有什么牛掰的基本性質嗎?
將方程中的某些項改變符號后,從方程的一邊移到另一邊的變形叫做移項,移項的依據是等式的基本性質1。
移項時不一定要把含未知數的項移到等式的左邊。如解方程3x-2=4x-5時就可以把含未知數的項移到右邊,而把常數項移到左邊,這樣會顯得簡便些。
去分母,將未知數的系數化為1,則是依據等式的基本性質2進行的。
四、等式一定是方程嗎?方程一定是等式嗎?
等式與方程有很多相同之處。如都是用等號連接的,等號左、右兩邊都是代數式,但它們還是有區別的。方程僅是含有未知數的等式,是等式中的特例。就是說,等式包含方程;反過來,方程并不包含所有的等式。如,13+5=18,18-13=5都屬于等式,但它們并不是方程。因此,等式一定是方程的說法是不對的。
五、"解方程"與"方程的解"是一回事兒嗎?
方程的解是使方程左、右兩邊相等的未知數的取值。而解方程是求方程的解或判斷方程無解的過程。即方程的解是結果,而解方程是一個過程。方程的解中的"解"是名詞,而解方程中的"解"是動詞,二者不能混淆。