求解三對角線性方程組兩類并行算法的特點
km(a,r0)=span{r0,ar0,a2r0,…,am-1r0}
選取不同的km和lm就得到不同的krylov子空間方法。主要算法包括四類:基于正交投影方法、基于正交化方法、基于雙正交化方法、基于正規(guī)方程方法。
krylov子空間迭代法的收斂速度依賴于系數(shù)矩陣特征值的分布,對于很多問題,直接使用迭代法的收斂速度特別慢,或者根本不收斂。因此使用預(yù)條件改變其收斂性,使中斷問題可解,并加速收斂速度是需要的。目前人們研究的預(yù)條件技術(shù)可分為四類:采用基于矩陣分裂的古典迭代法作為預(yù)條件子、采用不完全lu分解作預(yù)條件子、基于系數(shù)矩陣近似逆的預(yù)條件子、結(jié)合實際問題用多重網(wǎng)格或區(qū)域分解作預(yù)條件子。對krylov子空間和預(yù)條件krylov子空間方法有詳細的討論。
預(yù)條件krylov子空間方法的并行計算問題一直是研究熱點,已提出了一系列好的并行算法。目前預(yù)條件krylov子空間方法的計算量主要集中在矩陣向量乘上。雖然學(xué)者們做了大量的研究工作,但是還沒找到效果好,又易于并行的預(yù)條件子。
需要特別指出的是,對于一般線性代數(shù)方程組的并行求解,其可擴展并行計算的研究已相對成熟,并已形成相應(yīng)的并行軟件庫,如美國田納西亞州立大學(xué)和橡樹嶺國家實驗室研制的基于消息傳遞計算平臺的可擴展線性代數(shù)程序庫scalapack和得克薩斯大學(xué)開發(fā)的界面更加友好的并行線性代數(shù)庫plapack。我們借鑒其研究成果和研究方法,對三對角線性方程組并行算法的研究是有幫助的。
五、結(jié)語
三對角線性方程組的直接解法,算法豐富,程序較容易實現(xiàn)。但計算過程要增加計算量,并且大部分算法都對系數(shù)矩陣的要求比較高。迭代解法適合于非零元素較多的情況,特別是結(jié)合預(yù)條件子的krylov子空間迭代法已成為當(dāng)前研究的熱點。
盡管三對角系統(tǒng)并行算法的研究取得了很多成果。但是還存在一些問題:直接法中,分治策略帶來計算量和通信量的增加,如何減少計算量和通信量有待于進一步的研究;目前直接算法均基于分治策略,如何把其它并行算法設(shè)計技術(shù),如平衡樹和流水線等技術(shù)應(yīng)用到三對角系統(tǒng)的并行求解中也是需要引起重視的方向;對于非對稱系統(tǒng)還沒找到一種通用的krylov子空間方法;krylov子空間方法的并行實現(xiàn)時僅考慮系數(shù)矩陣與向量乘,對其它問題考慮不夠;以往設(shè)計的并行算法缺乏對算法可擴展性的考慮和分析。